Implementing next generation video broadcast standards with Ensigma RPUs

Share on linkedin
Share on twitter
Share on facebook
Share on reddit
Share on digg
Share on email

When we originally introduced the Ensigma Series4 RPU family, we mainly focused on the support for different connectivity standards such as Wi-Fi and Bluetooth. However, there were also several mentions of the Ensigma’s capability to support broadcast TV and radio standards. In this two part article, I would like to reveal some details about a next generation broadcast TV standard called DVB-S2X and how we plan to support it using our Ensigma RPU architecture. In a follow-up post, I will then delve into how we support radio broadcast standards (DAB and HD Radio)

The figure below shows the evolution of the digital and mobile TV broadcast standards as well as the applications that have been driving these standards. The DVB-S2X is the latest of the video broadcast standards currently promoted by DVB Project.   01-Evolution of video broadcast standards

An introduction to DVB-S2X

DVB-S2X – why now?

With higher speeds and more efficient satellite technology, there are larger volumes of data, video and voice being driven over satellite. Some of the applications driving this include the rise of Ultra HD, the rapid adoption of H.265 (also known as HEVC) and other highly efficient video codecs, IP trunking and backhauling, multiservice networks over satellite and so on.

To give you an idea of how much pressure these new standards are putting on the existing infrastructure, a 4K video stream encoded with H.264 for instance requires data rates of up to 40 Mbps.

DVB-S2X – extensions

DVB-S2X is an extension to the DVB-S2 standard with key performance related enhancements. Some of these include:

  • Low roll off, smaller carrier frequency and advanced filters

These specifications directly translate to a gain in bandwidth and reduced interference resulting in upto 15% efficiency improvements compare to DVB-S2.

  • Modulation & Coding (MODCODS) , FEC upgrades

The new MODCOD schemes (64, 128, 256 APSK) help drive higher throughput applications such as Ultra HD with AVC coding.  In combination with the improved FEC, the efficiency gains can be upto 51%.

  • Channel Bonding

The channel bonding facilitates merging of transponder capacities thus providing extra gain of upto 12% for 3 bonded channels. This is specifically needed for UHDTV with data rate requirements of upto 40 Mbps.

  • Additional Standard Scrambling Sequences

The addition of six new scrambling codes as opposed to one default code in DVB-S2 helps mitigate Co Channel Interference (CCI)

Ensigma RPU support for DVB-S2X

The Explorer RPU has been enhanced to add support for DVB-S2X. Two new hardware peripheral blocks the Decision Feedback Equalizer (DFE) and De-mapper (DEMAP) help implement

    • Header Detection and Decode
    • Framing
    • Phase/Gain Tracking
    • Equalization
    • Slicing

02-Ensigma Series4 RPU architecture

The output from the new blocks is written back to the Global Memory (GRAM) which is used by other accelerator blocks such as the Error Correction Processor. The Modulation & Coding Processor (MCP) continues performing signal processing tasks such as acquisition, tracking and equalizer adaptation.

The RPU will initially support all the normative features for Broadcast services listed in the table below.  In the next releases, it is designed flexibility to support optional features such as

    • Higher Order Constellations (64, 128 and 256 APSK)
    • VLSNR
    • Channel Bonding

03-DVB-S2X FEC frame short03-DVB-S2X FEC frame normalN- Normative, O – Optional, NA – Not Applicable

To summarize, The Ensigma RPUs are flexibly designed to address the needs of high-speed connectivity, TV demodulation and radio demodulation standards.

Interested in our unique Ensigma communications technology? Then subscribe to our blog and follow us on Twitter for more exciting news on Imagination’s Ensigma RPUs!

Narayanan Raman

Narayanan Raman

Narayanan Raman is a Senior Business Development Manager within the Ensigma Business Unit at Imagination Technologies. In this role he serves as an internal and external champion for Ensigma’s product offerings, working closely with the sales channel and key customers. Prior to this role, Narayanan worked in engineering roles for over 14 years, developing physical layer algorithms and firmware for WLAN and DSL at Imagination, Broadcom and Infineon.

Please leave a comment below

Comment policy: We love comments and appreciate the time that readers spend to share ideas and give feedback. However, all comments are manually moderated and those deemed to be spam or solely promotional will be deleted. We respect your privacy and will not publish your personal details.

Blog Contact

If you have any enquiries regarding any of our blog posts, please contact:

United Kingdom
Tel: +44 (0)1923 260 511

Search by Tag

Search by Author

Related blog articles

dancing people listening to music

Why you should care about Bluetooth Low Energy Audio

Earlier this week, we announced our new iEB110 IP, a complete Bluetooth Low Energy IP solution based on the recently announced Bluetooth SIG version 5.2 specification. We’re particularly excited about this IP as the BLE 5.2 specification introduces LE audio, which is a significant step forward for Bluetooth audio, both in terms of sounds quality and functionality.

Read More »


Sign up to receive the latest news and product updates from Imagination straight to your inbox.