
Introduction to PowerVR for Developers

Revision: 1.0
12/05/2021

Public

Copyright © 2021 Imagination Technologies Limited. All rights reserved.

 Introduction to PowerVR for Developers — Revision 1.0

Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is',
without any warranty of any kind. Redistribution of this document is permitted with acknowledgement of the source.

Published: 12/05/2021-19:19

2 Public Imagination Technologies Ltd

 Introduction to PowerVR for Developers — Revision 1.0

Contents

1. Introducing PowerVR..4

2. History of PowerVR.. 5
From the 80s to Present Day..5

3. Modern GPUs...7
How Does a GPU Differ From a CPU?...7
Parallelism.. 7
Vector and Scalar Processing... 8

4. PowerVR Architecture Overview... 10
The PowerVR Advantage.. 10

Tile-Based Deferred Rendering (TBDR)...10
Hidden Surface Removal Efficiency... 13
Unified and non-unified shader architectures...15

5. Optimising for PowerVR...17
Do Understand the Target Device... 18
Do Profile the Application.. 18
Do Not Use Alpha Blend Unnecessarily..19
Do Perform Clear...19
Do Not Update Data Buffers Mid-Frame... 20
Do Use Texture Compression..21
Do Use Mipmapping.. 22
Do Not Use Discard...23
Do Not Force Unnecessary Synchronisation.. 23
Do Move Calculations 'Up the Chain'..24
Other Considerations When Optimising for PowerVR...25

Do Group Per Material..26
Do Not Use Depth Pre-pass...27
Do Prefer Explicit APIs... 27
Do Prefer Lower Data Precision...28
Do Use All CPU Cores... 28
Do Use Indexed Lists... 28
Do Use Level of Detail (LoD)... 29
Do Use On-chip Memory Efficiently for Deferred Rendering..29

6. Glossary... 31

7. Further Information... 33

8. Contact Details.. 34

Imagination Technologies Ltd Public 3

1. Introducing PowerVR — Revision 1.0

1. Introducing PowerVR
This document provides developers with an overview of PowerVR, including the history,
and details of the PowerVR graphics hardware architecture.

The PowerVR architecture is optimised for minimising memory bandwidth usage and
reducing power consumption, while improving processing throughput.

PowerVR technology is developed and licensed by Imagination Technologies.

Important: It is assumed the reader is familiar with the 3D graphics programming
pipeline of OpenGL, DirectX, Vulkan, or a similar 3D graphics programming API.

4 Public Imagination Technologies Ltd

2. History of PowerVR — Revision 1.0

2. History of PowerVR

From the 80s to Present Day
A brief history of where PowerVR came from, and the journey to the present day

Imagination Technologies began life as VideoLogic back in 1985 working with video
technology. During the 90s, the company branched into graphics under the PowerVR
brand. The initial target was arcade machines, but before long a license was signed
with NEC (now Renesas) to develop PC-based solutions. PowerVR technology began
to appear in popular PC graphics cards such as the Matrox M3D, and Apocalypse
3Dx.

The desktop graphics market became very competitive during the late 90s. PowerVR
was critically renowned for its quality and performance versus the more brute force
approach applied by rivals. As a result, PowerVR won the coveted GPU slot in Sega's
powerful and highly-regarded Dreamcast console. The PowerVR Series2 GPU used
was the same as the Naomi arcade version, which had become widespread by this
time. This made porting easier, so gamers could now enjoy playing many of their
favourite arcade games at home.

In 1999, Videologic decided to re-brand as Imagination, to reflect the new focus on
licensing IP.

In the early 2000s, Imagination went into partnership with ST MicroElectronics and
Hercules, to make the 3D Prophet 4500 (Series3). Memory bandwidth had become
a serious concern, but PowerVR's efficient architecture compensated well for this
issue. As a result, this Kyro II-based card was able to outperform cards such as the
GeForce2 in many areas, for a fraction of the price.

During the mid 2000s, Imagination changed direction to focus on mobile phones,
correctly gambling that there was a real future in hardware 3D acceleration on

Imagination Technologies Ltd Public 5

2. History of PowerVR — Revision 1.0

device. There was an early start in the first smartphones, such as the Nokia N95
and Sony Ericsson P1. However, PowerVR led the way as the GPU inside many of
the groundbreaking all-screen devices that did away with the need for a stylus, and
depended entirely on a smooth graphical interface.

The high performance with low power cost architecture meant it was naturally a
PowerVR GPU (SGX - Series5) that could be found in the very popular PlayStation
Vita handheld.

With such a solid reputation and continuous innovation, PowerVR technology began
to crop up all over the mobile and embedded market. Amazon Fire tablets and sticks,
early Samsung Galaxy phones, Samsung TVs, set top boxes, car instrument clusters
and dashboard displays, smart ovens... the list continues to grow.

AR/VR, and automotive are just some of the new markets being targeted. Ray-
tracing and neural networking are other areas where PowerVR is making impressive
technological achievements.

6 Public Imagination Technologies Ltd

3. Modern GPUs — Revision 1.0

3. Modern GPUs

How Does a GPU Differ From a CPU?
A modern System on Chip (SoC) often integrates both a Central Processing Unit
(CPU) and a Graphics Processor Unit (GPU). They are designed differently depending
on the type of data set they are more likely to be processing.

CPUs are optimised to execute large, heavily branched tasks on a few pieces of
data at a time. A thread running on a CPU is often unique and is executed on its
own, generally independent of all other threads. Any given processing element will
process in just a single thread. Typical numbers of threads for a program on a CPU is
commonly one to eight, up to a few tens at any period of time.

GPUs are optimised to work on the principle that the same piece of code will be
executed in multiple threads, often numbering into the millions, to handle the large
screen resolutions of today’s devices. These threads differ only in input and normally
follow the exact same execution steps.

Parallelism
Every graphics processor executes the same instruction on multiple threads
concurrently, in the form of Single Instruction, Multiple Data (SIMD) processing.

The main advantage of the SIMD architecture is that significant numbers of threads
can be run in parallel for a correctly structured application, and this is done with
extremely high efficiency. SIMD architectures are usually capable of running many
orders of magnitude more threads at once than a typical CPU.

SIMD is designed to operate on large coherent data sets and performs exceptionally
well at this type of task. Algorithms that operate independently on a large coherent
data set, such as graphics and image processing, are therefore well suited for this
processor type.

Imagination Technologies Ltd Public 7

3. Modern GPUs — Revision 1.0

Vector and Scalar Processing
Modern graphics core architectures feature multiple processing units which are
either vector or scalar based. Both are supported by different versions of PowerVR
architecture – Series 5 supporting vector, and Series 6, Series 7 and Series 8
supporting scalar.

• Scalar processing units operate on a single value per processing unit.

• Vector processing units work on multiple values per processing unit.

Vector

Vector processing can be very efficient, as the execution unit can work on multiple
values at the same time rather than just one. For colour and vertex manipulation,
this type of architecture is extremely efficient. Traditional rendering operations are,
therefore, well suited to this architecture as calculations often operate on three or
four elements at once.

The main drawback of vector architectures is that if scalar values or vectors smaller
than the processor expects are used, the additional processing element width is
wasted. The most common vector width is four, which means that a shader or
kernel mainly operating on three component vectors will operate these instructions

8 Public Imagination Technologies Ltd

3. Modern GPUs — Revision 1.0

with 75% efficiency. Having a shader that works on only one scalar at a time may
take this number down to as low as 25%. This wastes energy and performance as
parts of the processor are not doing any work. It is possible to optimise for this by
vectorising code, but this introduces additional programmer burden.

Scalar

Scalar processors tend to be more flexible in terms of the operations that can be
performed per hardware cycle, as there is no need to fill the additional processing
width with data. Whilst vector architectures could potentially work on more values
in the same silicon area, the actual number of useful results per clock will usually
be higher in scalar architectures for non-vectorised code. Scalar architectures tend
to be better suited to general purpose processing and more advanced rendering
techniques.

Imagination Technologies Ltd Public 9

4. PowerVR Architecture Overview — Revision 1.0

4. PowerVR Architecture Overview

The PowerVR Advantage
PowerVR is the name of the graphics hardware IP family from Imagination
Technologies. The ethos behind PowerVR has always been efficiency and technique,
over brute force. All generations are based on Imagination’s patented Tile Based
Deferred Rendering (TBDR) architecture. The core design principle of the TBDR
architecture is to keep the system memory bandwidth requirements of the graphics
hardware to a bare minimum.

As data transferred to and from system memory is the biggest cause of graphics
hardware power consumption, any reduction made in this area will allow the
hardware to operate at a lower power. Additionally, the reduction in system memory
bandwidth use and the hardware optimisations associated with it, such as using on-
chip buffers, enables an application to execute its render at a higher performance
than other graphics architectures.

Due to the balance of low-power and high-performance, PowerVR graphics cores are
dominant in the mobile and embedded devices market.

Tile-Based Deferred Rendering (TBDR)
The usual rendering technique on most GPUs is known as Immediate Mode
Rendering (IMR) where geometry is sent to the GPU, and gets drawn straight away.
This simple architecture is somewhat inefficient, resulting in wasted processing
power and memory bandwidth. Pixels are often still rendered despite never being
visible on the screen, such as when a tree is completely obscured by a closer
building.

PowerVR's Tile-Based Deferred Rendering architecture works in a much smarter
way. It captures the whole scene before starting to render, so occluded pixels can
be identified and rejected before they are processed. The hardware starts splitting
up the geometry data into small rectangular regions that will be processed as one
image, which we call “tiles”. Each tile is rasterized and processed separately, and
as the size of the render is so small, this allows all data to be kept on very fast chip
memory.

Deferred rendering means that the architecture will defer all texturing and shading
operations until all objects have been tested for visibility. The efficiency of PowerVR
Hidden Surface Removal (HSR) is high enough to allow overdraw to be removed
entirely for completely opaque renders. This significantly reduces system memory
bandwidth requirements, which in turn increases performance and reduces power
requirements. This is a critical advantage for phones, tablets, and other devices
where battery life makes all the difference.

The diagram below illustrates the Tile-Based Deferred Rendering (TBDR) pipeline.

10 Public Imagination Technologies Ltd

4. PowerVR Architecture Overview — Revision 1.0

Generally, the parts up to and including "Tiling" are considered part of the Tiler, and
the parts from "Raster" onwards are considered part of the Renderer. These are
described in more detail on the following pages.

Vertex Processing (Tiler)

Every frame, the hardware processes submitted geometry data with the following
steps:

1. The execution of application-defined transformations, such as vertex shaders
(Vertex Processing).

2. The resulting data is then converted to screen-space (Clip, Project, and Cull).

3. The Tile Accelerator (TA) then determines which tiles contain each transformed
primitive (Tiling).

4. Per-tile lists are then updated to track the primitives which fall within the bounds
of each tile.

Each tile in the tile list contains primitive lists which contain pointers to the
transformed vertex data. The tile list and the transformed vertex data are both
stored in an intermediate store called the Parameter Buffer (PB). This store
resides in system memory, and is mostly managed by the hardware. It contains all
information needed to render the tiles.

Imagination Technologies Ltd Public 11

4. PowerVR Architecture Overview — Revision 1.0

Per-Tile Rasterization (Renderer)

Rasterization and pixel colouring are performed on a per-tile basis with the following
steps:

1. When a tile operation begins, the corresponding tile list is retrieved from the
Parameter Buffer (PB) to identify the screen-space primitive data that needs to be
fetched.

2. The Image Synthesis Processor (ISP) fetches the primitive data and performs
Hidden Surface Removal (HSR), along with depth and stencil tests. The ISP only
fetches screen-space position data for the geometry within the tile.

3. The Tag Buffer contains information about which triangle is on top for each pixel.

4. The Texture and Shading Processor (TSP) then applies colouring operations, like
fragment shaders, to the visible pixels.

5. Alpha testing and subsequently alpha blending is then carried out.

6. Once the tile’s render is complete, the colour data is written to the frame buffer in
system memory.

This process is repeated until all tiles have been processed and the frame buffer is
complete.

Further TBDR Details

On-chip buffers

Read-Modify-Write operations for the colour, depth and stencil buffers are performed
using fast on-chip memory instead of relying on repeated system memory access, as
traditional IMRs do. Attachments that the application has chosen to preserve, such
as the colour buffer, will be written to system memory.

PowerVR shader engine

The PowerVR shader engine is based on a massively multi-threaded and multi-
tasking approach. It is hardware-managed and load-balanced by using a data
driven execution model to ensure the highest possible utilisation efficiency. This
approach schedules tasks based on data availability, and enables switching between

12 Public Imagination Technologies Ltd

4. PowerVR Architecture Overview — Revision 1.0

independent processing tasks to ensure that data dependency stalls are avoided at
all costs.

Firmware
In many graphics architectures, hardware graphics events are handled on the CPU by
the graphics driver. All PowerVR graphics cores are managed by firmware, enabling
the graphics processor to handle the majority of high level graphics events internally.
This approach keeps event handling latency to a minimum and reduces the graphics
driver’s CPU overhead.

Hidden Surface Removal Efficiency
Overdraw is where pixels are wastefully coloured when they will not contribute to the
final image colour as they are overwritten by another object.

In a traditional IMR architecture, the scene shown above would cause green and red
colours to be calculated for the sphere and cube respectively in the areas that are
occluded by the yellow cone.

In architectures that include early-Z testing, an application can avoid some overdraw
by submitting draw calls from front to back. Submitting in this order builds up the
depth buffer so occluded fragments further from the camera can be rejected early.
However, this creates additional burden for the application, as draws must be sorted
every time the camera or objects within the scene move. It also does not remove
all overdraw as sorting per-draw is very coarse – for instance, it cannot account
for overdraw caused by object intersections. It also prevents the application from
sorting draw calls to keep graphics API state changes to a minimum.

Imagination Technologies Ltd Public 13

4. PowerVR Architecture Overview — Revision 1.0

With PowerVR TBDR, Hidden Surface Removal (HSR) will completely remove
overdraw regardless of draw call submission order.

The screenshot below is a capture from MadFinger Game’s Shadowgun.

The image below highlights the amount of overdraw in the same scene, ignoring
Early-Z or HSR optimisations that may be applied by a graphics core. The closer to
white a pixel is, the more overdraw is present.

In this frame, 4.7 fragments are coloured on average per screen pixel.

The final image below shows the amount of “PowerVR overdraw” (post-HSR) for the
same captured frame. On a PowerVR device, 1.2 fragments are coloured on average
per screen pixel, which is 75% fewer fragments than the application submitted.

14 Public Imagination Technologies Ltd

4. PowerVR Architecture Overview — Revision 1.0

The render cannot achieve a 1:1 ratio between coloured fragments per screen pixel
as the scene isn’t completely opaque, because blended UI elements are contributing
to the average.

Unified and non-unified shader architectures
Shader architectures can be unified or non-unified. PowerVR has a unified shader
architecture.

• A unified shader architecture executes shader programs, such as fragment and
vertex shaders, on the same processing modules.

• A non-unified architecture uses separate dedicated processing modules for vertex
and fragment processing.

Unified architectures can save power and increase performance compared to a non-
unified architecture.

Unified architectures also scale much more easily to a given application, whether it is
fragment or vertex shader bound, as the unified processors will be used accordingly.

Imagination Technologies Ltd Public 15

4. PowerVR Architecture Overview — Revision 1.0

16 Public Imagination Technologies Ltd

5. Optimising for PowerVR — Revision 1.0

5. Optimising for PowerVR
This section covers key principles to be followed to avoid critical performance flaws
when developing graphics applications. These recommendations come from the
combined experience of the PowerVR Developer Technology Support team and the
developers they work with, through profiling and optimising their applications and
games.

1. Do Understand the Target Device

• Seek to learn as much information about the target platforms as possible in order
to understand different graphics architectures, to use the device in the most
efficient manner possible.

2. Do Profile the Application

• Identify the bottlenecks in the application and determine whether there are
opportunities for improvement.

3. Do Not Use Alpha Blend Unnecessarily

• Be sure Alpha Blending is used only when required to make the most of deferred
architectures and to save bandwidth.

4. Do Perform Clear

• Perform a clear on a framebuffer's contents to avoid fetching the previous frame's
data on tile-based graphics architectures, which reduces memory bandwidth.

5. Do Not Update Data Buffers Mid-Frame

• Avoid touching any buffer when a frame is mid-flight to reduce stalls and
temporary buffer stores.

6. Do Use Texture Compression

• Reduce the memory footprint and bandwidth cost of texture assets.

7. Do Use Mipmapping

• This increases texture cache efficiency, which reduces bandwidth and increases
performance.

8. Do Not Use Discard

• Avoid forcing depth-test processing in the texture stage as this will decrease
performance in the early depth rejection architectures.

9. Do Not Force Unnecessary Synchronisation

• Avoid API functionality that could stall the graphics pipeline and do not access any
hardware buffer directly.

10. Do Move Calculations 'Up the Chain'

• Reduce the overall number of calculations by moving them earlier in the pipeline,
where there are fewer instances to process.

There are also a few other more minor considerations that can be found in the next
section.

Imagination Technologies Ltd Public 17

5. Optimising for PowerVR — Revision 1.0

Do Understand the Target Device
Seek to learn as much information about the target platforms as possible in order to
understand different graphics architectures, to use the device in the most efficient
manner possible.

Manufacturers' websites for devices are a good place to look for specifications and
they may also provide other helpful developer community resources. The PowerVR
Graphics SDK provides public architecture and performance recommendation
documents for reference:

• PowerVR Architecture Overview

• PowerVR Series5 Architecture Guide for Developers

• PowerVR Performance Recommendations

• PowerVR Low Level GLSL Optimisations

• PowerVR Instruction Set Reference

Note: Further PowerVR architecture documentation is available from us under a non-
disclosure agreement.

Even after the graphics architecture is thoroughly understood, it is important to
remember that other factors such as variations in CPU processing power, memory
bandwidth, and thermal load will also impact an application's performance.

Do Profile the Application
Identify the bottlenecks in the application and determine whether there are
opportunities for improvement.

It is important to understand where performance is bottlenecked before attempting
to optimise an application. This ensures effort is not wasted, or visual quality is not
sacrificed for minimal gains. If an optimisation is inappropriately applied to an area
that is not bottlenecking performance, there may be no performance improvement.
In some cases, an incorrectly applied optimisation may lead to worse performance.

From the PowerVR Developer Technology team's experience, we have derived the
following list of common bottlenecks generally found in applications that have not
been optimised, as ordered from most to least common:

• CPU usage

• Bandwidth usage

• CPU/graphics core synchronisation

• Fragment shader instructions

• Geometry upload

• Texture upload

• Vertex shader instructions

• Geometry complexity.

18 Public Imagination Technologies Ltd

http://cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.Architecture+Overview+for+Developers.pdf
https://docs.imgtec.com/PerfRec/topics/c_PerfRec_introduction.html
https://docs.imgtec.com/LowLevelGLSL/topics/c_LowLevelGLSL_introduction.html
http://cdn.imgtec.com/sdk-documentation/PowerVR+Instruction+Set+Reference.pdf

5. Optimising for PowerVR — Revision 1.0

Profiling tools are vital in this process for developers to understand what is
happening in their application, the hardware it is running on, and how and where
bottlenecks are occurring. The PowerVR SDK includes the profiling tools PVRTrace/
PVRCarbon and PVRTune to aid development on platforms powered by PowerVR
hardware.

Do Not Use Alpha Blend Unnecessarily
Be sure alpha blending is used only when required to make the most of deferred
architectures and to save bandwidth.

Disable alpha blending wherever possible. If transparent objects are required, keep
the number of transparent objects to a minimum. The reasoning behind this is
that deferred renderers, such as PowerVR graphics cores, calculate the visibility of
fragments before the corresponding fragment shader is invoked to process it. This
prevents invisible fragments in the output image being processed unnecessarily.

If alpha blending is enabled, then the hardware used to determine a fragment's
visibility cannot be used. This is because the occluded (alpha-blended) fragment
may impact the final rendered image. Due to this behaviour, enabling alpha blending
eliminates the benefits of deferred rendering graphics architectures. This means
the hardware is no longer able to make decisions about a fragment's visibility and
drop it from the pipeline. This will likely result in overdraw which is where fragments
are being processed that are not actually visible in the final image. Overdraw can
negatively impact the application's performance, particularly if the application is
already limited by rendering.

Do Perform Clear
Perform a clear on a frame buffer's contents to avoid fetching the previous frame's
data on tile-based graphics architectures, which reduces memory bandwidth.

System memory accesses use more bandwidth and power than any other graphics
operation. Keeping memory accesses to a minimum will reduce the chances of
an application being memory bandwidth bound, and will also reduce the power
consumption of an application.

Most applications need to generate a colour image at the end of the render, but
have no need to preserve depth and stencil data between frames. Therefore, if
frame buffer attachments do not need to be preserved at the end of a render, the
appropriate frame buffer attachments can be invalidated to prevent them being
written out to system memory.

Even fewer applications have a genuine need to upload the contents of the colour
buffer's previous contents at the start of a new frame. Therefore, if the contents
previously written to a frame buffer are not required, the driver can be informed not
to load them from system memory to on-chip tile memory through a clear operation
at the start of the render.

The net result of performing a clear and invalidating frame buffers will be a massive
reduction in system memory bandwidth usage, and reduced power consumption.

Imagination Technologies Ltd Public 19

https://www.imgtec.com/developers/powervr-sdk-tools/pvrtrace/
https://www.imgtec.com/developers/powervr-sdk-tools/pvrtrace/
https://www.imgtec.com/developers/powervr-sdk-tools/pvrtune/

5. Optimising for PowerVR — Revision 1.0

In OpenGL ES® a clear can be performed by calling the glClear function at
the beginning of a render. Additionally, the glDiscardFramebufferEXT or
glInvalidateFramebuffer functions can be used to invalidate a frame buffer at the
end of a render.

In Vulkan, the API gives explicit control over load and store operations on frame
buffer attachments. When creating a frame buffer, set the load operation to either
VK_ATTACHMENT_LOAD_OP_DONT_CARE or VK_ATTACHMENT_LOAD_OP_CLEAR. The store
operation should preferably be set to VK_ATTACHMENT_STORE_OP_DONT_CARE unless
the data requires preserving.

Do Not Update Data Buffers Mid-Frame
Avoid touching any buffer when a frame is mid-flight to reduce stalls and temporary
buffer stores.

Modifying in-flight resources currently in use by the GPU such as vertex buffers and
textures has a significant cost. Graphics processors tend to have at least one frame
of latency to ensure that the hardware is always well-occupied with work. Therefore,
altering a resource required by an outstanding render will usually result in one of the
following actions being taken:

1. Stall in the buffer modifying API call until the outstanding render completes.

2. A new temporary buffer allocated for the new data, so the buffer modifying API
call can complete without stalling the CPU thread.

As textures are generally accessed during fragment shading much later in the
graphics pipeline than vertex attributes, the cost of a graphics driver stalling a
texture modification is higher than modifying a vertex buffer. The driver may choose
to avoid a stall entirely by creating temporary buffer stores (ghosting) which is good
for performance, but it may not be desirable for applications that are already running
out of buffer storage space.

The stalling and ghosting behaviour of graphics processors varies between different
GPUs and driver versions. For optimal performance, only modify vertex buffers and
textures when absolutely necessary. If buffers must be modified, use application-
side circular buffering so that the graphics processor can read from one buffer object
while the application's CPU thread writes to another. This prevents the stalling and
ghosting behaviours.

20 Public Imagination Technologies Ltd

5. Optimising for PowerVR — Revision 1.0

If the application is using the Vulkan graphics API, then it is the responsibility of the
application developer to synchronise with the graphics processor. The appropriate
mechanisms such as fences and semaphores must be put in place, to ensure that
the application does not access a resource while the graphics processor is using it.
This gives much more control over how and when resources are accessed, but comes
at the cost of a more complex application as the driver will not safeguard against
accessing data currently in use by the graphics processor.

Do Use Texture Compression
Reduce the memory footprint and bandwidth cost of the texture assets.

In some instances, it is worth considering the balance between texture size and
texture compression. It may be possible to use a larger texture and a low-bitrate
compression scheme and achieve a better balance of bandwidth savings and
acceptable image quality.

Imagination Technologies Ltd Public 21

5. Optimising for PowerVR — Revision 1.0

Texture compression, not to be confused with image file compression, minimises the
runtime memory footprint of textures. This provides several performance benefits,
but primarily reduces the amount of system memory bandwidth consumed sending
data to the graphics core.

PVRTC and PVRTCII are PowerVR specific compression technologies and will achieve
best performance on the hardware, consuming as little as 2 bits per pixel. These
textures are also very texture cache efficient as the lower pixel size allows more
pixels to fit in the limited amount of cache memory available to the texture units.

Depending on the PowerVR generation and graphics API targeted, additional
compressed texture formats may be supported, such as ASTC.

Do Use Mipmapping
This increases texture cache efficiency, which reduces bandwidth and increases
performance.

Mipmaps are smaller, pre-filtered variants of a texture image, representing different
levels of detail of a texture. By using a minification filter mode that uses mipmaps,
the graphics core can be set up to automatically calculate which level of detail comes
closest to mapping the texels of a mipmap to pixels in the render target. This means
it can then use the right mipmap for texturing.

Using mipmaps has two important advantages:

1. It increases graphics rendering performance by massively improving texture
cache efficiency, especially in cases of strong minification - the texture data is
more likely to fit inside tile memory.

2. It improves image quality by reducing aliasing that is caused by the under
sampling of textures that do not use mipmapping.

The single limitation of mipmapping is that it requires approximately a third more
texture memory per image. Depending on the situation, this cost may be minor
when compared to the benefits in terms of rendering speed and image quality.

There are some exceptions where mipmaps should be avoided. For example:

• Where filtering cannot be applied sensibly, such as for textures that contain non-
image data such as indices or depth textures.

• Textures that are never minified, such as UI elements where texels are always
mapped one-to-one to pixels.

Ideally mipmaps should be created offline using a tool like PVRTexTool, which is
available as part of the PowerVR Graphics Tools and SDK.

It is possible to generate mipmaps at runtime, which can be useful for updating the
mipmaps for a render to texture target. In OpenGL ES this can be achieved using
the function glGenerateMipmap. In Vulkan there is no such built in function, and
developers must generate mipmaps manually.

Generation of mipmaps online will not work with compressed textures such as
PVRTC, which must have their mipmaps generated offline. A decision must be made
as to which cost is the most appropriate: the storage cost of offline generation, or

22 Public Imagination Technologies Ltd

https://www.imgtec.com/developers/powervr-sdk-tools/pvrtextool/
https://www.imgtec.com/developers/powervr-sdk-tools/installers/

5. Optimising for PowerVR — Revision 1.0

the runtime cost (and increased code complexity in the case of Vulkan) of generating
mipmaps at runtime.

Do Not Use Discard
Avoid forcing depth-test processing in the texture stage as this will decrease
performance in the early depth rejection architectures.

Applications should avoid the use of the discard operation in the fragment shader as
using it will not improve performance. Most mobile graphics cores use a form of tile
based deferred rending (TBDR) and using discard negates some of the benefits of
this type of architecture. If possible, an application should prefer alpha blending over
discarding.

Applications should also avoid alpha testing. When an alpha-tested primitive is
submitted, early depth testing, such as PowerVR's Hidden Surface Removal (HSR),
can discard fragments that are occluded by other fragments closer to the camera.
Unlike opaque primitives which would also perform depth writes at this pipeline
stage, alpha-tested primitives cannot write data to the depth buffer until the
fragment shader has executed and fragment visibility is known. These deferred
depth writes can impact performance, as subsequent primitives cannot be processed
until the depth buffers are updated with the alpha tested primitive's values.

For optimal performance, consider alpha blending instead of alpha test to avoid
costly deferred depth write operations. To ensure HSR removes as much overdraw as
possible, submit draws in the following order:

1. Opaque

2. Alpha-tested

3. Blended.

Do Not Force Unnecessary Synchronisation
Avoid API functionality that could stall the graphics pipeline, and do not access any
hardware buffer directly.

Graphics applications achieve the best performance when the CPU and graphics core
tasks run in parallel. Graphics cores also operate most efficiently when the vertex-
processing tasks of one frame are processed in parallel to the fragment-colouring
tasks of previous frames. When an application issues a command that causes the
CPU to interrupt the graphics core, it can significantly reduce performance.

Imagination Technologies Ltd Public 23

5. Optimising for PowerVR — Revision 1.0

The most efficient way for the hardware to schedule tasks is vertex processing
executing in parallel to fragment tasks. To achieve this, the application should aim to
remove functions which cause synchronisation between the CPU and graphics core
wherever possible.

• In OpenGL ES - synchronisation functions such as glReadPixels , glFinish ,
eglClientWaitSync and glWaitSync.

• In Vulkan® - there is much finer control over synchronisation between resources,
as any synchronisation between the graphics processor and CPU is defined by the
developer.

One of the most common causes of poor application performance is when the
application accesses the contents of a frame buffer from the CPU. When such an
operation is issued, the calling application's CPU thread must stall until the graphics
core has finished rendering into the frame buffer attachment. Once the render is
complete, the CPU can begin reading data from the attachment. During this time,
the graphics core will not have write access to that attachment, which can cause the
graphics core to stall subsequent renders to that frame buffer.

Due to the severe cost, these operations should only be used when absolutely
necessary - for example to capture a screenshot of a game when a player requests
one.

Do Move Calculations 'Up the Chain'
Reduce the overall number of calculations by moving them earlier in the pipeline
where there are fewer instances to process.

By performing calculations earlier in the pipeline, the overall number of operations
can be reduced, and therefore the workload can also be substantially reduced.
Generally in a scene there are far fewer vertices than fragments that need to be
processed. This means processing per vertex, instead of per fragment, would greatly
reduce the number of calculations. One use case, for example, could be to perform
per vertex lighting instead of per pixel lighting.

24 Public Imagination Technologies Ltd

5. Optimising for PowerVR — Revision 1.0

It is also possible to consider moving calculations off the graphics core altogether.
Although the graphics core may be able to perform operations far more rapidly
than the CPU can, it would be even faster for the CPU to perform an operation just
once instead of the allowing the operation to be performed for many vertices on the
graphics core.

To take the concept even further, consider performing calculations offline by baking
values into the scene, effectively replacing expensive run-time calculations with a
simple lookup. For example, replacing real-time lighting with light maps for static
objects in a scene, such as terrain, buildings and trees can be a particularly effective
compromise. This substantially improves performance, and in many cases provides
higher quality lighting than would be possible to calculate at run-time.

Other Considerations When Optimising for PowerVR
Here are some other points which should be considered to improve application
performance:

• Do Group per Material

Grouping geometry and texture data can improve application performance.

• Do Not Use Depth Pre-pass

Depth pre-pass is redundant on deferred rendering architectures.

• Do Prefer Explicit APIs

Graphical application made using explicit APIs tend to run more efficiently, if set
up correctly.

Imagination Technologies Ltd Public 25

../../../PowerVR_Architecture/topics/rules/c_GoldenRules_do_group_per_material.html
../../../PowerVR_Architecture/topics/rules/c_GoldenRules_do_not_use_depth_pre_pass.html
../../../PowerVR_Architecture/topics/rules/c_GoldenRules_do_prefer_explicit_apis.html

5. Optimising for PowerVR — Revision 1.0

• Do Prefer Lower Data Precision

Lower precision shader variables should be used, where appropriate, to improve
performance.

• Do Use All CPU Cores

Using multi-threading in applications is key to efficient CPU use.

• Do Use Indexed Lists

Indexed lists can reduce mesh storage requirements by eliminating redundant
vertices.

• Do Use Level of Detail (LoD)

Accounting for Level of Detail allows an application to improve performance while
maintaining perceived graphical quality.

• Do Use On-chip Memory Efficiently for Deferred Rendering

Making greater use of on-chip memory reduces overall system memory
bandwidth usage.

Do Group Per Material
Grouping geometry and texture data can improve application performance.

Modifying the GL state machine incurs CPU overhead in the graphics driver, as
changes need to be interpreted and converted into tasks that can be issued to the
graphics core. To reduce this overhead, minimise the number of API calls and state
changes made by the application.

For geometry data, combine as many meshes as possible into a single draw call.
Here is an example use case:

Grouping train seat meshes

Meshes for seats on a train use the same render and have static
position and orientation relative to one another. The seats and the train
could all be combined into a single mesh. To draw the train interior,
several draw calls have merged into a single call.

PowerVR makes grouping easier

With the Hidden Surface Removal (HSR) feature on PowerVR hardware it is not
necessary to submit geometry in depth-order to reduce overdraw. By freeing
applications from this restriction they can focus on sorting draws by render state,
ensuring state changes are minimised.

Textures can also be grouped

Similar to geometry data, it is possible to combine several textures into a single
bindable object by using texture atlases or texture arrays where available. Textures
can then be applied per object with the appropriate shader uniforms.

26 Public Imagination Technologies Ltd

../../../PowerVR_Architecture/topics/rules/c_GoldenRules_do_prefer_lower_data_precision.html
../../../PowerVR_Architecture/topics/rules/c_GoldenRules_do_use_all_cpu_cores.html
../../../PowerVR_Architecture/topics/rules/c_GoldenRules_do_use_indexed_lists_2.html
../../../PowerVR_Architecture/topics/rules/c_GoldenRules_do_use_level_of_detail__lod.html
../../../PowerVR_Architecture/topics/rules/c_GoldenRules_do_use_on_chip_memory_efficiently_for_deferred_rendering_2.html

5. Optimising for PowerVR — Revision 1.0

Think carefully about how to group objects to achieve the best performance

As discussed in Do Not Update Data Buffers Mid-Frame, modifying buffer data
may stall the graphics pipeline or increase the amount of memory allocated by the
graphics driver. When batching draws together, it is important to consider the update
frequency of buffers. For example, batch spatially coherent objects with static vertex
data into one vertex buffer, and objects with dynamic data, such as soft body objects
like cloth, into another.

Do Not Use Depth Pre-pass
Depth pre-pass is redundant on deferred rendering architectures.

On graphics hardware that employs a deferred rendering architecture such as
PowerVR, an application should not perform a depth pre-pass as there is no
performance benefit. Performing this operation would be a waste of clock cycles and
memory bandwidth. This is because the hardware will detect and remove occluded
(opaque) geometry from the pipeline automatically during rasterization, before
fragment processing begins.

Do Prefer Explicit APIs
Graphical applications made using explicit APIs tend to run more efficiently, if set up
correctly.

Vulkan® is a new generation graphics and compute API. It is highly efficient,
streamlined, and modern, and designed to take advantage of current and future
device architectures. Vulkan works on a wide variety of platforms such as desktop
PCs, consoles, mobile devices, and embedded devices.

Vulkan makes full use of modern CPUs

Vulkan is designed from the ground up to take advantage of modern CPU
architectures such as multi-core and multi-threaded systems, and rendering work
can be spread over many logical threads. The Vulkan “Gnome Horde” demo in the
PowerVR SDK shows this aspect of the API very nicely.

Vulkan does require more work upfront

Vulkan is designed to have minimal driver overhead, but this comes at the cost
of a more complex programming paradigm – explicit. In Vulkan, it is up to the
application developer to handle low level details such as memory allocation for
buffers and explicit synchronisation between resources. However, once the API is
mastered, a Vulkan graphics application is likely to run much more efficiently and
more predictably across various devices compared to legacy graphics APIs.

PowerVR and Vulkan

Our PowerVR SDK includes a Framework for developers targeting PowerVR
platforms. This Framework reduces the need for boilerplate code, provides helpers,
and much more, making Vulkan development much easier.

Imagination Technologies Ltd Public 27

https://github.com/powervr-graphics/Native_SDK
https://github.com/powervr-graphics/Native_SDK

5. Optimising for PowerVR — Revision 1.0

Do Prefer Lower Data Precision
Lower precision shader variables should be used, where appropriate, to improve
performance.

Variables in shaders declared with the mediump modifier are represented as 16-bit
floating point (FP16) values. Applications should use FP16 wherever appropriate, as
it typically offers a significant performance improvement by theoretically doubling
the floating point throughput over FP32 (highp). It should be considered wherever
FP32 would normally be used, provided the precision is sufficient and the maximum
and minimum values will not overflow, as visual artefacts may be introduced.

Do Use All CPU Cores
Using multi-threading in applications is key to efficient CPU use.

Modern mobile devices usually have more than a single CPU core. To achieve the
best performance possible on modern CPU architectures, it is crucial that applications
use multi-threading wherever possible.

For example, consider having graphics updates on the main thread, while having
physics updates running on a separate worker thread. Splitting large chunks of
work such as physics, animations, and file I/O over multiple threads enables the
application to use the CPU more efficiently. This usually results in a smoother end-
user experience.

If the application is targeting the Vulkan graphics API, it may be possible to split
preparation of draw commands (building command buffers) over several threads.

Do Use Indexed Lists
Indexed lists can reduce mesh storage requirements by eliminating redundant
vertices.

Vertex buffers enable the graphics driver to cache vertex data attributes, such as
texture coordinates for mapping 2D images to the mesh, and model/space position.
For static objects which have vertex attributes that change infrequently if at all,
vertex buffers improve performance as the cached data can be reused to render
many frames.

Index buffers allow vertex re-use for triangles that share an edge

In the example above, an index buffer is used in conjunction with a vertex buffer.
Index buffers define the order in which elements of a vertex buffer should be
accessed to represent the triangles in a mesh. Vertex attributes are written into
the vertex buffer once, then referenced as many times as required to represent the
triangles surrounding that vertex position. This means that index buffers improve
performance and reduce the storage space requirements of complex mesh data.

PowerVR hardware is optimised for indexed triangle lists

For finely-tuned performance, vertex and index buffers should be sorted. This
improves cache efficiency when the data is accessed by the GPU. Our 3D scene

28 Public Imagination Technologies Ltd

5. Optimising for PowerVR — Revision 1.0

exporter and converter tool, PVRGeoPOD, automatically applies sorting to mesh data
when generating POD (PowerVR Object Data) files.

Do Use Level of Detail (LoD)
Accounting for Level of Detail allows an application to improve performance while
maintaining perceived graphical quality.

Level of Detail is an important consideration for an application, the concept of
‘good enough’ should be employed here. Application developers must consider the
usage of expensive graphics effects and high quality assets against the impact on
performance.

Mipmapping is one form of LoD, which was discussed in Mipmapping. A second
consideration for LoD is geometry complexity. An appropriate level of geometry
complexity should be used for each object or portion of an object.

Inadequate consideration of LoD leads to wasted resources

The following are examples of a waste of compute and memory resources:

• Using a large number of polygons for an object that will never cover more than a
small area of the screen, like a distant background object.

• Using polygons for detail that will never be seen due to camera angle, or culling –
such as objects outside of the view frustum.

• Using large numbers of primitives for objects that can be drawn with much fewer
numbers, with minimal to no loss in visual fidelity. As an example - using many
hundreds of polygons to render a single quad.

Consider using shader techniques to reduce geometry complexity

Bump mapping can be used to minimise geometry complexity, but still maintain a
high level of perceived detail. This is especially true for techniques such as reflection
passes, where higher amounts of geometry may not be visible.

Do Use On-chip Memory Efficiently for Deferred Rendering
Making greater use of on-chip memory reduces overall system memory bandwidth
usage.

Graphics techniques such as deferred lighting are often implemented by attaching
multiple colour render targets to a frame buffer object, rendering the required
intermediate data, and then sampling from this data as textures. While flexible,
this approach, even when implemented optimally, still consumes a large amount of
system memory bandwidth, which comes at a premium on mobile devices.

APIs have methods which allow efficient use of on-chip memory

Both OpenGL ES (3.x) and Vulkan graphics APIs provide a method to enable
communication between fragment shader invocations which cover the same pixel
location – through intermediate on-chip buffers. This buffer can only be read from
and written to by shader invocations at the same pixel coordinate.

Imagination Technologies Ltd Public 29

https://www.imgtec.com/developers/powervr-sdk-tools/pvrgeopod/

5. Optimising for PowerVR — Revision 1.0

The GLES extension shader_pixel_local_storage(2) and Vulkan transient attachments
enable applications to store the intermediate per-pixel data in on-chip tile memory.
While each method has its own implementation details, they both provide similar
functionally and both bring the same benefits. For example the "G-Buffer"
attachments in a deferred lighting pass that are only needed once can be stored in
tile memory, and then completely discarded when drawing is complete.

These features can potentially reduce the amount of system memory bandwidth used by
deferred rendering

Both of the API features described above are extremely beneficial for tile-based
renderers such as PowerVR graphics cores. The intermediate frame buffer
attachments are never allocated or written out to system memory - they only
exist in on-chip tile memory. This is extremely beneficial for mobile and embedded
systems where memory bandwidth is at a premium.

Using these features correctly will result in a significant reduction in system memory
bandwidth usage. Additionally, most techniques (such as deferred lighting) that write
intermediate data out to system memory and then sample from it at the same pixel
location can be optimised using these API features.

30 Public Imagination Technologies Ltd

6. Glossary — Revision 1.0

6. Glossary
A description of relevant graphical terms

Term Meaning
ALU Arithmetic Logic Unit. Responsible for processing

shader instructions.
Early-Z An umbrella term for a collection of optimisations

commonly used by graphics cores. Early-Z
techniques reduce overdraw by performing depth
tests early in the graphics pipeline.

Firmware A dedicated program running on the graphics core
that handles hardware events.
For example: a tile processing operation completing.

Fragment The data necessary to calculate a pixel colour.
Multiple fragments may contribute to the colour of a
pixel.
For example: when a transparent object is drawn in
front of an opaque object.

Graphics pipeline The sequence of processing stages within a graphics
core that must be executed to render an image.

HSR Hidden Surface Removal.
IMR Immediate Mode Renderer.
ISP Image Synthesis Processor.
Overdraw The term “overdraw” refers to wastefully colouring

pixels that do not contribute to the final image
colour.

SIMD Single Instruction, Multiple Data. Concurrent
execution of a single instruction across multiple
ALUs, where each ALU has unique input and output.

Scalar [shader architecture] A shader architecture in which an ALU processes a
single value at a time.

Pixel The smallest addressable area of a frame buffer.
Rasterization The process of determining which pixels a given

primitive touches.
Render The process of converting application-submitted data

into coloured pixels that can be stored in the frame
buffer.

Renderer The tile processing stage of a TBDR pipeline. This
includes rasterization and fragment shading.

TA Tile Accelerator.
TBR Tile Based Renderer.
TBDR Tile Based Deferred Renderer.
Tile A rectangular group of pixels. In TBR and TBDR

architectures, the frame buffer is broken into many
tiles. The tile size of each PowerVR graphics core
is decided during hardware design, typically 32x32
pixels.

Tiler The vertex shading, clipping, projection, culling, and
tiling stages of a TBDR pipeline.

TSP Texture and Shading Processor.

Imagination Technologies Ltd Public 31

6. Glossary — Revision 1.0

Term Meaning
Vector [shader architecture] A shader architecture in which an ALU processes

multiple values simultaneously. Vector architectures
commonly have a width of 4, allowing the ALU to
calculate values for the ‘x’, ‘y’, ‘z’ and ‘w’ components
of a vector data type.

32 Public Imagination Technologies Ltd

7. Further Information — Revision 1.0

7. Further Information
Over the years, there have been many generations of the PowerVR hardware family.
All modern PowerVR generations are based on the Tile Based Deferred Rendering
architecture outlined in this documentation. These are commercially available and
actively targeted by 3D graphics developers.

For more information regarding the PowerVR hardware family, refer to the Imagination
website:

https://www.imgtec.com/graphics-processors/

For more detailed information regarding the PowerVR hardware architecture, you may
find what you need here or you can contact us. Some PowerVR architecture information
is only available under NDA.

Imagination Technologies Ltd Public 33

https://www.imgtec.com/graphics-processors/
https://www.imgtec.com/developers/powervr-sdk-tools/documentation/

8. Contact Details — Revision 1.0

8. Contact Details
For further support, visit our forum:

http://forum.imgtec.com

Or file a ticket in our support system:

https://pvrsupport.imgtec.com

For general enquiries, please visit our website:

http://imgtec.com/corporate/contactus.asp

34 Public Imagination Technologies Ltd

http://forum.imgtec.com
https://pvrsupport.imgtec.com
http://imgtec.com/corporate/contactus.asp

	Contents
	1. Introducing PowerVR
	2. History of PowerVR
	From the 80s to Present Day

	3. Modern GPUs
	How Does a GPU Differ From a CPU?
	Parallelism
	Vector and Scalar Processing

	4. PowerVR Architecture Overview
	The PowerVR Advantage
	Tile-Based Deferred Rendering (TBDR)
	Vertex Processing (Tiler)
	Per-Tile Rasterization (Renderer)
	Further TBDR Details

	Hidden Surface Removal Efficiency
	Unified and non-unified shader architectures

	5. Optimising for PowerVR
	Do Understand the Target Device
	Do Profile the Application
	Do Not Use Alpha Blend Unnecessarily
	Do Perform Clear
	Do Not Update Data Buffers Mid-Frame
	Do Use Texture Compression
	Do Use Mipmapping
	Do Not Use Discard
	Do Not Force Unnecessary Synchronisation
	Do Move Calculations 'Up the Chain'
	Other Considerations When Optimising for PowerVR
	Do Group Per Material
	Do Not Use Depth Pre-pass
	Do Prefer Explicit APIs
	Do Prefer Lower Data Precision
	Do Use All CPU Cores
	Do Use Indexed Lists
	Do Use Level of Detail (LoD)
	Do Use On-chip Memory Efficiently for Deferred Rendering

	6. Glossary
	7. Further Information
	8. Contact Details

