
PowerVR Compute Development
Recommendations

Revision: 1.0
13/03/2020

Public

Copyright © 2020 Imagination Technologies Limited. All rights reserved.

 PowerVR Compute Development Recommendations — Revision 1.0

Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is',
without any warranty of any kind. Redistribution of this document is permitted with acknowledgement of the source.

Published: 13/03/2020-15:48

2 Public Imagination Technologies Ltd

 PowerVR Compute Development Recommendations — Revision 1.0

Contents

1. Introduction..5
Document Overview...5
Glossary... 5

2. A Modern System on Chip...7
Single Instruction, Multiple Data.. 8

Parallelism... 8
Divergence - Dynamic Branching... 8

Scalar or Vector Processing.. 9
Vector.. 9
Scalar.. 9

3. Architecture Overview.. 10
Compute Data Master..10
Coarse Grain Scheduler.. 11
Unified Shading Cluster... 11

Execution...11
Memory..13

USC Pair.. 17
Texture Processing Unit...17
L1 Mixed Cache...17
System Level Cache..17

4. Performance Guidelines... 18
Execute Tasks on the Most Appropriate Processor.. 18

Choose a Suitable Device.. 19
Identifying and Creating Work for the Graphics Core.. 19
Sharing the Graphics Core between Compute and Graphics Tasks.................................... 20

Minimise Bandwidth Usage... 20
Avoid Redundant Copies.. 20
Group Memory Access Together.. 23
Use Shared/Local Memory Sensibly.. 23
Access Memory in Row-Major Order... 24

Maximise Utilisation and Occupancy...24
Work on Large datasets... 24
Choose an Appropriate Work-Group Size..25
Reduce Unified Store Usage (Private Memory)... 26
Reduce Common Store Usage (Shared/Local Memory)..26
Be Aware of Padding..26

Maximise Instruction Throughput...26
Trade Precision for Speed..27
Tweak Work for the Graphics Core..27
Avoid Excessive Flow Control.. 28
Avoid Barrier Directly after Local or Constant Memory Access..28

Imagination Technologies Ltd Public 3

 PowerVR Compute Development Recommendations — Revision 1.0

Use Built-ins for Type Conversions.. 28

Measuring Peak Performance... 30
Example Device: 500MHz G6400... 30
Measured Throughput..31

Complex Operations... 32

Optimisation Strategy Cheat Sheet.. 34

4 Public Imagination Technologies Ltd

1. Introduction — Revision 1.0

1. Introduction
PowerVR Rogue is a family of Graphics Cores from Imagination Technologies designed
to perform both compute and graphics tasks. Its programmable core architecture allows
for extremely efficient and high-performance compute execution.

Document Overview
Elaboration on context of the document and its goals.

This document describes the recommended usage guidelines for achieving optimal
performance when using compute on Imagination's PowerVR Rogue Graphics Cores.
Most of the guide describes constructs and patterns that directly emerge from
the PowerVR Rogue architecture. This enables the developer to make the correct
decisions irrespective of the preferred approach as far as APIs and programming
languages are concerned. Additionally, several specific details are included for
OpenCL, OpenGL, OpenGL ES Compute, and RenderScript. These details have been
written against the following API versions:

• OpenGL ES 3.1

• OpenGL 4.3

• OpenCL 1.x and 2.0

• RenderScript

This document assumes that the reader has a good working knowledge of at
least one of these APIs. It is also assumed that the reader has worked through
the examples of the relevant PowerVR Compute SDK, or has referred to Google's
documentation for RenderScript, available here.

After reading this document, readers should have a solid understanding of how
compute works on Rogue Graphics Cores, as well as a good understanding of how to
develop efficient and well-optimised code for these devices.

Note: This document also provides an optimisation strategy quick reference sheet in
Appendix C.

Glossary
A list of commonly used terms and their meanings/alternatives.

Throughout this document, extensive use is made of terminology identified in the
table below.

Imagination Technologies Ltd Public 5

https://developer.android.com/guide/topics/renderscript/compute

1. Introduction — Revision 1.0

Table 1: Common terms

Term Also referred to as Description
USC (Unified Shading Cluster) Shading Cluster, Shading Unit,

Execution Unit
A semi-autonomous part of the
Graphics Core that can typically
execute an entire work-group.
Other large parts like Texture
Units can be shared among USCs.

Core Processor, Graphics Core An almost completely
autonomous part of the Graphics
Core. Typically, a collection of
USCs and possibly supporting
hardware such as texture units.

Task Thread Group, Warp, Wavefront The native grouping of threads
that a USC executes. Consists of
32 threads on PowerVR Rogue
cores.

Table 2: API-specific terminology

Term OpenGL and OpenGL
ES

OpenCL RenderScript

Kernel or shader Compute shader Kernel Kernel
Thread Thread, shader instance Work-item Kernel Invocation
work-group work-group Work-group N/A
Shared memory shared variables local memory N/A
Image Texture, image Image Image
Constant, constant
memory

const / uniform
variable, uniform block,
uniform buffer

constant memory Constants

Private memory Local variables,
temporaries

Variables, private
memory

Local variables,
temporaries

Dataset Dispatch size, dataset Global work, ND Range Dataset

6 Public Imagination Technologies Ltd

2. A Modern System on Chip — Revision 1.0

2. A Modern System on Chip
A quick explanation into the background of Rogue architecture.

As shown in the figure below, a modern System on Chip (SoC) often integrates both
a CPU and a Graphics Core. The CPU is optimised for processing sequential, heavily-
branched datasets that require low memory latency, dedicating transistors to control
and data caches. The Graphics Core is optimised for repetitive processing of large,
unbranched datasets, such as in 3D rendering. Transistors are dedicated to arithmetic
logic units rather than data caches and flow control.

Figure 1: Abstract heterogeneous architecture

Control

Unified System Memory

Large Cache

Core

Core

Fe
w

 T
hr

ea
ds

Fe
w

 T
hr

ea
ds

CPU

Small
Cache

Small
Cache

Graphics Core

SIMD
Processing

Unit

Execution Queues

SIMD
Processing

Unit
M

an
y

Th
re

ad
s

M
an

y
Th

re
ad

s

Imagination Technologies Ltd Public 7

2. A Modern System on Chip — Revision 1.0

Single Instruction, Multiple Data
Typical CPUs are optimised to execute large, heavily-branched tasks on multiple
pieces of data at a time. A thread running on a CPU is often unique and is executed
on its own, largely independent of all other threads. Any given processing element
will process just a single thread. Typical numbers of threads for a specific program
on a CPU are commonly one to eight, up to a few tens at any period of time.

Graphics Cores work on the principle that the exact same piece of code will be
executed on numerous multiple threads, often numbering into the millions, to handle
the large screen resolutions of modern devices. These operations differ only in
input and normally follow the exact same steps, instruction for instruction. To do
this efficiently, each processor executes the same instruction on multiple threads
concurrently, in a form of Single Instruction, Multiple Data (SIMD) processing.

This should not be confused with vector processing, which is another form of SIMD.
SIMD processors may either be scalar; operating on one element at a time, or
vector; operating on multiple elements at a time.

Parallelism
The main advantage of this type of architecture is that significant numbers of
threads can be run in parallel for a correctly structured application. This type of
parallelism is also done with extremely high efficiency and effectiveness. SIMD
architectures are usually capable of running many orders of magnitude more threads
at once than a typical CPU.

Operating on large coherent datasets is something they perform exceptionally well
at, which is why they are traditionally used for graphical and image processing.
Algorithms that function independently on such data are well suited to this sort of
processor.

Divergence - Dynamic Branching
With each thread executing on one processor core, thread divergence must be
handled differently to how it works on a typical CPU. A CPU is made with the
assumption of a sequential pipe that will be branching, looping, doubling back, and
otherwise following an extremely complex flow control in a very deep call stack.
Modern CPUs are heavily optimised for this kind of work, with sophisticated branch
prediction and other features aiming to optimise this kind of program.

A typical Graphics Core is optimised with the assumption that each "batch" of
threads will execute the exact same code, instruction for instruction (lockstep),
without any difference whatsoever. Additionally, it is expected but not required that
the input will only be slightly different (coherent).

Optimising the design for these assumptions leads to the aforementioned efficiency
for these cases. The downside to this is that when branches are encountered (if,
while, dynamic for), each thread cannot just execute a different path. The typical
implementation is to have the processing core execute all paths of a branch in every
thread and just disable all threads that have not taken the path, unless none of
the paths are used. The actual mechanisms for this may be different on different
architectures, but the net effect is the same.

8 Public Imagination Technologies Ltd

2. A Modern System on Chip — Revision 1.0

In terms of computation, the cost of executing any branching code is the cost of
executing all branches (unless none of threads hit the branch) plus the branching
instructions themselves. It is therefore necessary to be careful of excessive
branching when executing on a SIMD processor. There are exceptions to this: one
of the most common and notable cases is conditionally loading or storing data from
main memory, where it is always worthwhile to branch. Usually, the bandwidth saved
vastly outperforms the branch cost.

Scalar or Vector Processing
Modern processing architectures can either operate on a single value per processing
unit (scalar) or multiple values per processing unit (vector).

Vector
Vector processing can be very efficient, especially for colour and vertex
manipulation, as it can work on multiple values at the same time, rather than
just one. Traditional rendering operations are therefore well suited to this type of
architecture, as calculations often operate on three or four elements at once.

The main drawback of vector architectures is that if scalar values or vectors smaller
than what the processor expects are used, the additional processing element width is
wasted. The most common vector width is four, which means that a shader or kernel
operating on three component vectors will operate these instructions with 75%
efficiency. Having a shader that does work on scalars in the worst case may take this
number down to as low as 25%. This wastes energy, as parts of the processor are
doing useless work. It is possible to optimise for this by vectorising code, but this
introduces additional programmer burden.

Scalar
Scalar processors tend to be more flexible in terms of what operations can be
performed per hardware cycle, as there is no need to fill the additional processing
width with data. Whilst vector architectures could potentially work on more values
in the same silicon area, the actual number of useful results per clock will usually be
higher in scalar architectures for non-vectorised code. Therefore, for compute tasks,
it is a lot easier to work with scalar architectures, as there is no need to vectorise.
Scalar architectures tend to be better suited to general purpose processing and more
advanced rendering techniques. PowerVR Rogue cores are all scalar architectures.

Imagination Technologies Ltd Public 9

3. Architecture Overview — Revision 1.0

3. Architecture Overview
Detailed explanation on PowerVR Rogue architecture.

PowerVR's Rogue architecture is a programmable architecture capable of executing
general purpose computations as well as rendering graphics.

As shown in the following figure, Rogue provides different hardware for transferring
vertex, pixel, and compute data between memory and the Graphics Core, and
programmable processors for performing the actual operations. Unlike the Series5
architecture, Rogue has a dedicated path for compute tasks via the Compute Data
Master (CDM), with the programmable arithmetic handled by Unified Shading Clusters
(USCs).

Figure 2: Rogue architecture and data flow overview

C
oa

rs
e

G
ra

in
 S

ch
ed

ul
er

System RAM

Sy
st

em
 L

ev
el

 C
ac

he

C
or

e
M

an
ag

em
en

t U
ni

t

Texture Load
Accelerator

C
om

pu
te

D

at
a

M
as

te
r

Pi
xe

l D
at

a
M

as
te

r
Ve

rte
x

D
at

a
M

as
te

r

C
oa

rs
e

G
ra

in
 S

ch
ed

ul
er

L1 Mixed Cache

Lossless
Decompression

Lossless
Compression

Pixel Back End

Tiling Accelerator

Unified Shading Cluster

Unified Shading Cluster

Texture
Processing

Unit

USC Pair

Unified Shading Cluster

Unified Shading Cluster

Texture
Processing

Unit

USC Pair

Rogue Core

Compute Data Master
Any compute jobs that have been dispatched by the host will need to be first
translated into individual tasks for the Graphics Core to consume. The job of the
Compute Data Master (CDM) is to take input from the host and generate these tasks.

10 Public Imagination Technologies Ltd

3. Architecture Overview — Revision 1.0

Coarse Grain Scheduler
Once tasks have been generated by the CDM, they have to be scheduled for
execution. The Coarse Grain Scheduler (CGS) takes the generated tasks and
schedules tasks across the available Unified Shading Clusters (USCs) on a broad
scale.

Unified Shading Cluster
Details on the Unified Shading Cluster component.

USCs are the programmable cores at the heart of the Rogue's computing power and
are where the code in compute kernels is executed as illustrated below. The USC is
a scalar SIMD processor, as described in the A Modern System on Chip section. Each
USC normally has 16 ALUs.

Figure 3: Rogue Unified Shading Cluster

ALU

ALU

ALU

ALU

Unified
Store ALU Unified

Store ALU Unified
Store ALU Unified

Store

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Unified
Store

Unified
Store

Unified
Store

Unified
Store

Unified
Store

Unified
Store

Unified
Store

Unified
Store

Unified
Store

Unified
Store

Unified
Store

Unified
Store

Iterator

Common Store

Fine Grain
Scheduler

Resident
Tasks

Unified Shading Cluster

Execution
To execute the code within a compute kernel, the compiler has to translate the
developer's intentions into something the USC can understand. It is equally useful

Imagination Technologies Ltd Public 11

3. Architecture Overview — Revision 1.0

for the kernel writer to understand the mapping between hardware and API to
understand how to get the best performance.

Threads

Each work item of OpenCL, thread of OpenGL ES, or kernel invocation for
RenderScript is handled as a thread of instructions in the hardware. These threads
are executed together, in groups of up to 32, known as a task. In any given cycle, 16
threads - one per ALU Pipe, will execute the same instruction. This means that half
of a task runs in lockstep, with the other half staggered so that it executes one cycle
behind.

Tasks

Tasks are the grouping used by Rogue hardware for SIMD execution of threads, with
each task treated as a unit of work. Each task is executed by all ALU Pipes, one at
a time, with half of the threads executing in lockstep in one cycle and the other half
executing in the next cycle.

In RenderScript, the number of tasks used by a given execution is managed by the
RenderScript compiler. If the global work size is a multiple of 32, the compiler will be
able to separate threads to complete tasks, where every thread in a task is actively
doing useful work. Any other number of items will leave threads vacant in some
tasks, with tasks filling until all kernel instances are attached to a thread. The actual
number of tasks and vacant threads per task will vary.

For OpenCL and OpenGL, while work-groups do not map directly to tasks, their size
dictates task allocation and is arguably very important. Work-groups are split into
tasks according to their size, as detailed in the following points:

• Work-group sizes that are a multiple of 32 allow each task generated to be fully
used. Every thread in the task is actively doing useful work, with multiple tasks
created until all work items are attached to a thread.

• Work-group sizes of four, eight, and 16 typically execute with multiple work-
groups per task – eight, four, or two respectively. However, if there is barrier
synchronisation in the kernel and the work-group size was not specified at
compile-time, tasks will execute one work-group per task. Unused threads in the
task will be left vacant, causing a dramatic drop in utilisation.

Note: The maximum work-group size of an execution is 512. Higher sizes are
unsupported.

Scheduling

The Fine Grained Scheduler (FGS) is responsible for scheduling and descheduling
work on a per-task basis from a pool of resident tasks. The size of this task pool will
vary from device to device, but can typically be expected to be 48 or higher. The
more tasks that are in this pool, the better any latency can be hidden.

One very important aspect of these tasks is that it is zero-cost for the USC. Tasks
that need to wait for any reason are switched out and a ready-to-execute task
is scheduled in its place immediately. This means that having large datasets
scheduled at the same time generally allows greater efficiency without incurring

12 Public Imagination Technologies Ltd

3. Architecture Overview — Revision 1.0

scheduling overhead. This is unlike, for example, CPU threads where scheduling cost
is considerable.

Data Dependencies

When a data transfer dependency is encountered in a kernel, a task will need to wait
for the data to be transferred before it can continue execution. The FGS will schedule
out this task at no cost and schedule in another if one is available, until the task is
ready to resume.

Data dependencies are not just data reads and writes but occur when the result of a
read or write is required by another instruction. Any memory fences or barriers that
occur within a kernel or implicit fences caused by using the result of a read will cause
a dependency.

Memory
Memory space inside the USC comprises largely of two banks of registers. These are:
the Common Store, which is shared across the entire USC; and the Unified Stores,
which are allocated per four ALU Pipelines.

Unified Stores

The Unified Stores are four small banks of registers in the USC, with each shared
equally between four ALU Pipes. Any local/temporary variables used in a kernel or
OpenCL private memory will be allocated into this space.

Each Unified Store consists of several 128-bit registers, with 1280 registers available
in each. The actual number of registers available to a thread will vary in practice
depending on a number of factors. Generally, using a maximum of 10 registers per
thread allows the minimum recommended occupancy of 512 threads per USC.

These 128-bit registers are effectively accessed by a kernel as if they were a
vector of four 32-bit registers, so a kernel can use up to 40 32-bit values to hit
the recommended utilisation. If a given kernel requires more than this, either
the number of resident tasks goes down or the number of threads executed per
task does, so that each thread gets more register space. Imagination's compiler
only reduces utilisation, as high occupancy is important to hide any latency in the
threads.

For very excessive memory allocations above this threshold, utilisation may get
to a point where it will not go any lower, and allocations will start spilling to main
memory. This has high bandwidth and latency costs, though most applications will
never hit this limit. The actual point that this happens is under software control and
will vary from device to device.

Note: The compiler will try to reduce Unified Store allocations where possible, though
it must balance this with the instruction count use as well. For OpenCL, the exact
amount of register usage can be determined with a disassembling compiler, which
Imagination can provide under NDA.

Imagination Technologies Ltd Public 13

3. Architecture Overview — Revision 1.0

Common Store

The Common Store is shared between all ALU Pipes in a given USC and is used for
any data that is coherent between threads. Any shared memory (shared in OpenGL,
local in OpenCL) is stored here. Constant memory allocations (const or uniform in
OpenGL, constant in OpenCL) that have known sizes at compile time are also stored
here. It is also used to store object handles such as image, texture, and sampler
states, or pointers to main memory.

Data in the Common Store is allocated across four banks, each representing a
column of data that is 128 bits wide, as shown below. Data transfers can be served
by multiple banks at once and an entire row of data can be read in a single cycle or
written in four cycles. Up to 16 threads in a task can each fetch a 32-bit value in one
cycle if they fetch consecutive data from the same row, shown in green below.

Figure 4: Good (16 values per cycle) in green, and worst (one
value per cycle) in red, shown on Common Store access.

Bank 0 Bank 1 Bank 2 Bank 3
32-bit offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
16
32
48
64
80
96

112
128

However, if more than one thread tries to access data from the same column as
another thread, as shown in red above, it will cause a bank clash as a bank can
only serve one such request per cycle. Instead, it will serialise these fetches and it
will take one cycle per row to access the same amount of data, slowing down the
pipeline. To avoid bank clashes, all data in the common store should be accessed
across rows. Maximum throughput is therefore 512 bits/cycle: four 128-bit registers,
consisting of four 32-bit values for example, from different banks each cycle.

For instance, imagine a kernel that uses a block of shared memory as a linear array
of float. In the best case, if the stride between each kernel’s access was exactly
32-bit, with each thread fetching a subsequent float variable, all 16 threads would
be able to fetch one value each in one cycle. The worst case scenario is that if the
stride between each kernel was 512-bit, with kernels trying to access every 16th

14 Public Imagination Technologies Ltd

3. Architecture Overview — Revision 1.0

float in the array, the shader would need 16 cycles, one for each value, to complete
the fetch. Formally, we could express the rules as:

• Four banks of 128-bit registers

• Each read can fetch an entire 128-bit register

• Each 128-bit register can hold up to four 32-bit values

• Each read takes one cycle

• Registers from the same bank cannot be read from in the same cycle

Some examples are shown below:

//OpenGL compute
shared float common[SIZE];

int gid = get_global_id(0);

//Best scenario : 32-bit stride(one float)
//100% throughput (512 bit/cycle), no clashes. One 32-bit value read/thread in one cycle.
float temp = common[gid];

//Worst scenario: 512 bit (16 float or four vec4) stride
//6.25% throughput(32 bit/cycle), 16-way clash. One 32-bit value read/thread in 16 cycles
float temp = common[gid * 16];

//Normal scenario : 128-bit stride (four float or one vec4), requesting 128 bits/thread
//100% throughput (512 bit/cycle), four-way clash for 16 threads
//throughput. Four 32-bit values read/thread in four cycles
vec4 temp = vec4(common[gid*4],common[gid*4+1], common[gid*4+2],common [gid*4+3]);

//OpenCL
local float common[SIZE];
int gid = gl_InvocationId.x;

//Best scenario : 32-bit stride (one float)
//100% throughput (512 bit/cycle), no clashes. One 32-bit value read/thread in one cycle.
float temp = common[gid];

//Worst scenario: 512 bit stride (16 float or four float4)
//6.25% throughput(32 bit/cycle), 16-way clash. One 32-bit value read/thread in 16 cycles
float temp = common[gid * 16];

//Normal scenario : 128-bit stride (four floats or one float4), requesting 128 bits/thread
//100% throughput (512 bit/cycle), four-way clash for 16 threads because we have exceeded max
//throughput. Four 32-bit values read/thread in four cycles
float4 temp = (float4)(common[gid*4],common[gid*4+1], common[gid*4+2],common [gid*4+3]);

The rule to avoid these scenarios is simple. At any one time, threads should read
consecutive values at the same time without any gaps. The most common way one
could accidentally enter that scenario would be having blocks of data per thread,
instead of interleaved data.

A good way to iterate an array that contains multiple values for each thread would
be:

float x = index * stride_per_index + thread_id

Conversely, the following is very likely to cause multi-way bank clashes and waste
bandwidth:

float x = thread_id * stride_per_thread + index

Imagination Technologies Ltd Public 15

3. Architecture Overview — Revision 1.0

System Memory Access

System memory is the Random Access Memory (RAM) on the device outside of the
Graphics Core, used by all system components. This is the type of memory that
is referred to when discussing "memory bandwidth" in general. As many different
subsystems need to access this memory, accesses have to be scheduled between
them, increasing the latency of memory fetches.

OpenCL memory marked as global, OpenCL constant memory with a size not
known at compile time, images, OpenGL Shader Storage Buffer Objects, and
RenderScript data in Allocators are stored in System Memory.

It is important to note that the System Memory budget is limited and shared
between all resources. The performance of many applications will be limited by this
resource, making it a prime target for optimisation.

Rogue hardware can perform burst transfers on data transfers to and from system
memory. This allows multiple bytes of data to be transferred in one go without
waiting for other devices. The more bytes that can be transferred in one burst, the
lower the total latency of all memory accesses.

System Memory transactions are cached. A cache line in the L1 or System Level
Cache is 128 bytes and maps to a 64-byte aligned segment in system memory.
Transactions larger than 128 bytes are broken down into multiple cache-line
requests that are issued independently. A cache line request is serviced at either
the throughput of the L1 or L2 cache, in case of a cache hit, or otherwise at the
throughput of system memory.

The hardware resolves System Memory accesses in row order for a given task's
threads, so accessing data in row order will increase cache locality. Consider the
instance of a task containing 16 threads that all perform an 8-byte memory transfer,
and the transfers resolve to accesses that all fall within the same aligned 128-byte
cache line. The access latency in that case would be the sum of the time taken to
service a single cache miss, plus the time to service a further 15 cache hits.

This memory can be read and written in transactions of one, two, four, or multiples
of four bytes, and must be aligned to on-chip memory appropriately. One-byte
transactions are byte-aligned, two-byte transactions must be 2-byte aligned,
and all other transactions must be 4-byte aligned. For best performance, data
should generally be accessed from the kernel in this way. The compiler will split an
unaligned transfer into multiple aligned transfers, which will be slower.

If a kernel performs all of its reads and writes at the same location in a kernel,
it is possible for the compiler to combine multiple reads and writes into a single
burst transaction. A burst transfer among the Unified Store and Global memory can
transfer a maximum of 64 bytes at once. This includes any reads or writes within the
shader or kernel between the system memory and temporaries or OpenCL private
memory. In order to perform these burst transfers, global memory must be aligned
to four bytes, which normally includes all data types or vectors equal to or larger
than 32 bits. Examples of such are int, int2, int4, float, float2, float4,
double, short2, char4, but not char, char2, bool, short.

Burst transfers between System Memory and the Common Store can transfer
different amounts of data if the following conditions are met. In the case of OpenCL,
this depends on the size of the work-group.

16 Public Imagination Technologies Ltd

3. Architecture Overview — Revision 1.0

• Transfer memory between local and global memory in any direction

• A work-group's size is greater than or equal to 17 and specified at compile time

• The OpenCL function async_work_group_copy is used

Then, a different burst transfer to the common store can be executed, which
provides a maximum of 4096 bytes across the work-group with a single instruction.
In the typical cases of preloading data into shared memory, this path should always
be preferred. Otherwise, burst transfers to the Common Store (shared memory) can
still be used efficiently, but not as much as the above method.

USC Pair
Each USC pair contains two USCs and a Texture Processing Unit (TPU) to allow the
most efficient balance between texture access requirements and compute density.
The USC is the main processing element in the Rogue architecture.

Texture Processing Unit
The TPU is a specialised piece of hardware used to accelerate access to images and
textures from within kernel code. It handles image reads directly with its own cache
to ensure that image data transfers are as fast as possible. This hardware exists to
better handle the typically huge size of images and the specialised access required
by most image processing algorithms.

L1 Mixed Cache
The L1 Mixed Cache is the main cache used by the Rogue architecture and all data
transfers to and from memory go through here first. If this cache cannot serve a
data fetch request, the request is passed to the System Level Cache.

System Level Cache
The System Level Cache interacts directly with the System RAM and is the last
chance for a data fetch to hit a cache. Data fetches that miss this cache are fetched
from System RAM.

Imagination Technologies Ltd Public 17

4. Performance Guidelines — Revision 1.0

4. Performance Guidelines
Recommendations to optimise application performance on PowerVR Rogue.

PowerVR Rogue Graphics Cores are capable of efficiently executing a range of parallel
processing algorithms. To achieve the best performance, it is important to follow the
guidelines throughout this section as closely as possible. These guidelines are based on
four main strategies:

• Execute Tasks on the Most Appropriate Processor

• Minimise Bandwidth Usage

• Maximise Utilisation and Occupancy

• Maximise Instruction Throughput

For all these strategies, it is always a good idea to profile applications to find out where
the bottlenecks in processing are. This will work as a guide as to where to target
optimisation efforts and can be used to determine the results of any given optimisation.
The PowerVR SDK provides PVRTune as a real-time hardware profiler which supports the
visualisation of how the Graphics Core is being used.

Table 3: The methods outlined and their API appropriacy

Applicable toMethod
OpenCL OpenGL OpenGL ES RenderScript

Create Allocations
with Correct USAGE
Flags

#

Create Shared
Memory
Objects with
CL_ALLOC_HOST_PTR

#

Create Buffers with
the Correct Usage
Hints

#

Use Zero-Copy
Paths if Possible

#

Use Shared/Local
Memory Sensibly

#

Avoid Barrier
Directly after Local
or Constant Memory
Access

#

Use Built-ins for
Type Conversions

#

Execute Tasks on the Most Appropriate Processor
Explaining how correctly assigning tasks improves performance and how to do so.

If the hardware platform includes both a CPU and Graphics Core, an application
should be structured so that it exposes both serial and parallel tasks. Serial tasks are

18 Public Imagination Technologies Ltd

4. Performance Guidelines — Revision 1.0

most efficiently executed on a CPU, whereas parallel tasks are good candidates for
executing on a Graphics Core.

To maximise system performance, tasks should be running on the CPU and Graphics
Core at the same time. For example, using the CPU to prepare the next batch of data
while the Graphics Core processes the current batch. The Graphics Core is often a
more power efficient processor if the algorithms used can be expressed as a highly
parallel task. If the aim is to reduce power consumption, it becomes important to
consider whether an algorithm can be expressed as a parallel task for execution on
the Graphics Core, letting the CPU idle for this time.

Choose a Suitable Device
Choosing a device varies depending on the API. The developer should consider the
work that is to be split between the CPU and Graphics Core as work that would be
split into tasks suited for sequential or parallel execution. Tasks for the CPU can be
implemented in any language supported by the platform, such as C++ or Java.

In OpenGL and OpenGL ES, tasks for the Graphics Core are normally dispatched
as Compute Shaders. There are some cases where suitable alternatives exist and
can be successfully implemented. For example, using fragment shaders for image
processing when displaying directly to screen or implementing time-evolving physical
systems with vertex shaders and Transform Feedback. This document in general
assumes compute shaders, as they are by far the most flexible of the three with the
biggest area of application.

For OpenCL, the Installable Client Driver (ICD) enables multiple OpenCL drivers to
coexist under the same system. If a hardware platform contains OpenCL drivers for
other devices such as a CPU or DSP, an application can select between these devices
at run-time.

RenderScript dynamically chooses whether a task can run on CPU or Graphics Core
at runtime, depending on the workloads of each system and the suitability of the
kernel for execution on each. Thus, a developer cannot explicitly choose Graphics
Core execution, but by using RenderScript and noting any device restrictions, they
give RenderScript the choice to do so.

Identifying and Creating Work for the Graphics Core
The USCs rely on hardware multithreading to maximise use of their ALUs. As
described in the Architecture Overview section, the USC can execute instructions
from a pool of resident threads, switching between them with zero-cost.

Keep the USCs Busy

The most common reason a thread is not ready to execute is that its next instruction
is a pending memory access, which can span hundreds of cycles of latency. If
other threads are ready to execute during this entire period, the memory latency
is completely hidden. This results in full use of the USC, eliminating the cost of the
memory transfer.

If all threads are waiting for memory accesses, the USC will idle, reducing its
efficiency. In other words, the application is bandwidth limited. This usually happens
if the ratio of arithmetic to memory instructions in a kernel is low or there are not

Imagination Technologies Ltd Public 19

4. Performance Guidelines — Revision 1.0

enough threads available to hide the latency. Other system operations could also be
reducing the bandwidth available.

If an application is proving to be bandwidth limited, it is worth trying to reduce the
number of memory fetches in each kernel or favouring run-time calculations over
lookup tables. More work items can also be provided to help mask this. Tools such as
PVRTune can be used to help detect when this happens.

Avoid Overly Short Kernels with Small datasets

For a given kernel execution, the first few threads often run with reduced efficiency
due to the time taken to allocate work to the USCs. The last few executions also
often run with reduced efficiency as the pool of resident tasks has emptied. The
more work that is done per execution, the lower the percentage of this cost. This can
be achieved by:

• Using somewhat longer kernels, which can mask out the latency of the
scheduling/descheduling

• Working on larger datasets, which create more threads per execution that can all
be scheduled together. Typically, this should be in the order of several thousands
to millions of data points.

If an algorithm has a small kernel length or works on a small dataset, it may be
difficult to achieve high USC efficiency. In this case, the algorithm may be more
suited for execution on a CPU.

Sharing the Graphics Core between Compute and Graphics Tasks
A long-running kernel can starve system components that rely on 3D graphics
processing, such as a user interface. In this situation, a long-running kernel can be
split into multiple kernels executed one after another. This typically requires the first
kernel to write some data to global memory and the second to read this data back,
which will introduce additional bandwidth usage.

Minimise Bandwidth Usage
Explaining how reducing memory access can improve performance and how to do so.

If an application does not need to access memory or move data around, then it
should not do so. Several changes can allow an application to avoid this depending
on the algorithm used. Changes such as doing calculations at run-time instead of
using a lookup or reducing the number of memory fetches for an image filter can
help greatly. Other optimisations can be performed for Rogue Graphics Cores as
explained over the following sections.

Avoid Redundant Copies
One of the first steps in reducing memory throughput for an application is to ensure
that hardware components using the same memory all access the same data without
any intermediate copying required. Examples of hardware components include the
CPU, Graphics Core, camera interfaces, and video decoders.

20 Public Imagination Technologies Ltd

4. Performance Guidelines — Revision 1.0

Create Allocations with Correct USAGE Flags

Rogue devices are capable of allocating memory and then mapping the allocation
to a CPU pointer but cannot map arbitrary host-allocated memory into the Graphics
Core. In RenderScript, device memory models are treated semi-opaquely with no
explicit indication to the developer whether memory is allocated for the CPU or
Graphics Core. Memory spaces are defined for Allocations via "USAGE" flags however,
with each usage being treated as a potentially separate backing store.

Allocations should be explicitly synchronised across usages each time they are used
in a different context to ensure that everything has the same view of memory.
Synchronisations can cause copies to occur when memory is allocated in different
memory spaces and so should only be used when necessary. If an algorithm can be
designed to avoid synchronisations at any point, it should do so.

Create Shared Memory Objects with CL_ALLOC_HOST_PTR

In OpenCL, host and device memory models are specified independently from each
other, with interaction performed by either explicitly copying data or by sharing
regions of a memory object. Rogue devices are capable of allocating memory
and then mapping the allocation to a CPU pointer but cannot map arbitrary host-
allocated memory into the Graphics Core. Therefore, memory objects that are to
be shared should be created using the flag CL_ALLOC_HOST_PTR. They must also be
accessed using mapping functions clEnqueueMapBuffer or clEnqueueMapImage, and
clEnqueueUnmapMemObject.

If an object is created using the flag CL_USE_HOST_PTR, prior to enqueueing a kernel,
the driver will create a copy of it that can be mapped into the Graphics Core address
space. This copy occurs every time data is transferred between the host and device
and will increase system bandwidth demand.

Create Buffers with the Correct Usage Hints

In OpenGL and OpenGL ES, buffer allocation is handled by the driver semi-opaquely
with usage hints during buffer allocation. The same recommendations apply as
with OpenGL and OpenGL ES and it is therefore necessary to use the hints that
are correct for the developer's application. Mapping solutions (glMapBufferRange)
are preferred to explicit uploads (glBufferSubData) when the data is going to be
changed frequently.

Use Zero-Copy Paths if Possible

This specific technique is of particular note to interop tasks. When processing input
data from an external source such as a camera module, a zero-copy path can be
enabled between the camera data and the API image used by the Graphics Core.
This is achieved by using EGLImages. This typically means directly rendering an
image - see the example below for communicating an image from the Camera
module.

Imagination Technologies Ltd Public 21

4. Performance Guidelines — Revision 1.0

Figure 5: Zero-copy from a camera to OpenCL and from OpenCL to OpenGL ES

Application

Camera Driver OpenGL ES

Original Image Data

Camera Output OpenGL ES Input
Texture

OpenGL ES Output
Texture

EGLImage

Final Image Data

System Memory

OpenGL and OpenGL ES: If the output image is to be used outside the graphics
pipeline, it can also be shared with an EglImage. If the data is not required outside
the graphics pipeline, it may be worth it to consider directly using a fragment shader
for rendering directly to the framebuffer instead of using Image Load/Store.

OpenCL: A zero-copy path can also be enabled between the OpenCL output image
and the OpenGL ES input texture used for rendering by using EGLImages, as
illustrated below. An example of how to do this (OpenCL Example) is included in the
PowerVR SDK.

22 Public Imagination Technologies Ltd

4. Performance Guidelines — Revision 1.0

Figure 6: Zero-copy from a camera using EglImage

 Application

Camera Driver OpenCL

Original Image Data

Camera Output OpenCL Input
Image

OpenCL Output
Image

EGLImage

Final Image Data

System Memory

OpenGL ES Input
Texture

OpenGL ES

EGLImage

Group Memory Access Together
The compiler uses several heuristics and can identify memory access patterns in
a kernel that can be combined into burst transfers for read or write operations. To
allow this, memory accesses should be grouped together as closely as possible to be
as easy to identify as possible. Generally, putting reads at the start of a kernel and
writes at the end allows for the best efficiency. Accesses to larger data types, such
as vectors, also compile into single transfers wherever possible. This means that
loading a single float4 is preferred over four separate float values.

Use Shared/Local Memory Sensibly
Unlike Series5, Rogue devices have a good amount of shared memory available
to make good use of work-groups. Kernels should generally pre-fetch data into
shared memory if it is going to be accessed from multiple kernels. This is effectively
a software-controlled cache, augmenting the hardware-controlled caches on the
device.

Typically, the way to make good use of this is to evaluate how many accesses are
going to be needed across work-items, then cache these values into shared memory
at the start of a kernel. This work should ideally be done with explicit commands
where available, such as OpenCL async_work_group_copy. Or the work can be split
between available work items as evenly as possible, with no two threads caching

Imagination Technologies Ltd Public 23

4. Performance Guidelines — Revision 1.0

the same values. Barriers should be used to synchronise all work-items as late as
possible, but before using the values. Then, each kernel should proceed as usual,
using these cached values.

Access Memory in Row-Major Order
To make best use of the hardware's memory architecture, all memory should be
accessed in row-major order across threads. This applies to all memory banks
in the architecture, though for subtly different reasons as described in Memory
section. Generally, memory can be considered as linear, even when allocated as an
n-dimensional array. This means that two contiguous values in the last dimension
are physically next to each other in memory and can often be accessed together in
a single transfer. This is much more important when working on mobile devices with
limited bandwidth on large data sets.

Note: This applies to most kinds of memory and buffers, but specifically does not
apply to texture or image objects. These are optimised for cache efficiency based
on n-dimensional access and dedicated hardware handles this. In these cases, it is
important to access nearby pixels to ensure cache coherency. For example, a typical
two-dimensional texture should generally be accessed in square/neighbouring pixels
starting from (0, 0) and increasing. See the Texture Processing Unit section for more
details.

Maximise Utilisation and Occupancy
Explaining how to optimise the amount of work done and the benefits.

Utilisation is the efficiency of execution for each task with regards to the number
of ALU Pipes being used at any given time. If a given task does not have a full 32
threads performing useful work, then available processing power is being wasted and
utilisation is low. Developers should always strive to keep hardware busy.

Occupancy refers to the number of tasks that are queued and ready for execution
in a USC. The FGS can swap tasks seamlessly if a task is already resident, which
hides any latency that would otherwise be caused by stalls in a task that is currently
running. The Execution section gives more details on how the hardware manages
tasks and threads.

Work on Large datasets
The most important part of ensuring high utilisation and occupancy is to ensure
there are enough data points to make best use of the hardware. Datasets larger than
about 512 items per USC on the device typically provide enough work to maintain
high utilisation and occupancy, with larger numbers of items increasing efficiency
further.

Aim for a dataset Size that is a Multiple of 32

A dataset with a size that is a multiple of 32 is the best opportunity for full
utilisation. In the case of sufficiently large datasets, the difference in utilisation
should be negligible. However, care needs to be taken when doing this to ensure
that either filler data does not affect the final result or with code in the kernel. For
OpenCL, a kernel's global work size can be set to a padded size, whilst the actual

24 Public Imagination Technologies Ltd

4. Performance Guidelines — Revision 1.0

dataset is kept at its original size. In this case, the kernel must be careful to avoid
out of bounds memory accesses.

Choose an Appropriate Work-Group Size
The number of ALU Pipes active in any given cycle depends on the number of
threads assigned to each task. A task consists of 32 threads and a few things affect
whether these are all used fully or not. In OpenCL and OpenGL ES Compute, a
developer has precise control over this by choosing a work-group size, so it should
be chosen carefully.

Aim for a Work-Group Size of 32

Ideally, a work-group size of 32 is perfect for execution on Rogue hardware, as
this exactly matches the size of a task. This ideal situation is not always possible,
depending on the size of the total dataset actually being worked on and the local
problem space. Suggested work-group sizes are listed below, in order of decreasing
efficiency:

• 32

• Multiples of 32, up to and including 512 - which is practically ideal

• 16, eight, or four, specified at compile time - which is only recommended if no
alternative exists

• Any other size, though this should be avoided - will have several threads per
work-group idle

• Two, though again, this is ideally avoided - half of the threads will be idle

For a discussion on exactly how the compiler handles work-group sizes, see the
section concerning Execution.

Tell the Compiler the Work-Group Size

Applications should always tell the compiler how large a work-group a kernel expects
to work on.

For OpenGL and OpenGL ES this means using layout(local_size_x=X,
local_size_y=Y, local_size_z=Z).

For OpenCL this means using __attribute__((reqd_work_group_size(X, Y, Z))).

By knowing the size, the compiler can better allocate on-chip resources, such as
shared memory, and perform targeted optimisations at compile time. Deferring the
choice until the kernel is enqueued or letting the runtime choose misses out on these
opportunities.

In the case where a kernel is intended for use with multiple different work-group
sizes, compiling the kernel multiple times with different work-group sizes is usually
a much better option than deferring the choice to runtime. The performance gains
can be quite significant in some cases and is usually worth the additional application
complexity.

For work-group sizes of 16, eight, or four where barrier synchronisation is used, full
utilisation can only be achieved if this attribute is specified.

Imagination Technologies Ltd Public 25

4. Performance Guidelines — Revision 1.0

Reduce Unified Store Usage (Private Memory)
The USC's Unified Stores are shared between all work-items that are resident on
a USC at any given time and are used to store any temporary variables or OpenCL
private memory allocations, and in the kernel.

The compiler prioritises high occupancy over high utilisation and will reduce the
utilisation of each task based on private memory only. Having at least 512 threads
resident per USC provides the best opportunity to hide any data fetch latency whilst
maximising utilisation. This equates to a maximum of 40 scalar values used by the
kernel.

If a kernel uses less private memory than this, more tasks can be made resident on
most cores. The compiler will attempt to optimise unified store private memory use
where possible, reducing the final amount. Under NDA, Imagination can provide a
compiler which gives exact values for private register usage.

Reduce Common Store Usage (Shared/Local Memory)
Shared (OpenCL local) memory is extremely useful as it can act as a software-
controlled caching mechanism, thus reducing bandwidth requirements in an
application, as discussed in Group Memory Access Together. A lot of optimisations
usually start by caching into this store.

However, there are limits to how much can be used before affecting occupancy. As
with Unified memory, resident work-groups share local memory on a USC. The more
work-groups that can fit within the maximum available local memory, the greater the
opportunity the core has to hide latencies in kernel execution.

Be Aware of Padding
To improve data access speed, all data types less than 32-bits are padded to 32-bits
in both the Unified and Common Stores. This means that a char or short takes up
32-bits of register space.

Note: When querying the amount of local memory available to an OpenCL device,
the number returned is how many 32-bit values can be stored, which applies equally
to float, int, or char values.

For some kernels, this padding means that register use may start going beyond
best performance limits, as discussed previously, whereas it would not if they were
not padded. In these cases, it may be useful to manually pack or unpack values
from one or more 32-bit types. This allows values to be stored for their lifetime as
smaller values and only being expanded when needed. There is a computation cost
associated with this, so care should be taken.

Maximise Instruction Throughput
Explaining how to improve the rate of processing.

To get the best performance, the hardware needs to do as many calculations as
it can in as short a time as possible. Ensuring the right algorithm is used is the
most important thing to do here, as detailed in Identifying and Creating Work for

26 Public Imagination Technologies Ltd

4. Performance Guidelines — Revision 1.0

the Graphics Core. Once the correct algorithm is chosen, several optimisations can
further improve performance, as detailed below.

Trade Precision for Speed
Unless specifically needed for a particular scenario, precision should liberally
be traded for speed. This minimises the use of arithmetic instructions with low
throughput, as long as care is taken to ensure there is enough precision to produce
acceptable results.

For OpenGL and OpenGL ES, consider using mediump floats whenever practical.
These may have optimised paths by requiring less precision, resulting in some
reasonable gains in some common instructions.

For OpenCL kernels, always use the -cl-fast-relaxed-math build option, as this
enables aggressive compiler optimisations for floating-point arithmetic which the
standard otherwise disallows. This flag will often result in good performance gains
at the cost of very little precision. native_* math built-ins should also be used, as
they are much faster than their un-prefixed variants for the cost of some arithmetic
precision.

For RenderScript, enable the pragma operation #pragma rs_fp_relaxed to enable
some optimisations or #pragma rs_fp_imprecise to allow the compiler to perform
more aggressive optimisations.

Tweak Work for the Graphics Core
The PowerVR Graphics Core has an impressive arithmetic throughput and fully
supports integer and bitwise. Nevertheless, it is still beneficial to avoid instructions
that are excessively long or complicated. It is important to remember that all
Graphics Cores are optimised for floating point calculations and may achieve better
throughputs with them.

The integer path is reasonably fast, especially in combinations of arithmetic (except
division) bit-shifts. When tests are needed, it may be possible to process several of
those per cycle.

That said, it will normally be faster still to work with floating point. Ideally, the
numbers should be float in the first place. For kernels with a lot of arithmetic on
comparatively few values per kernel, it may be beneficial to even turn integer values
into float and back to integers after calculating. If in doubt, use a profiling compiler
as these kinds of gains will be reflected in the cycle count of the kernel.

Integer division should always be avoided if possible. Even the worst case scenario
of casting to float, dividing, and casting back to an integer will be a lot faster
than true integer division. The caveat of that is the reduced range of input; not
all integers can be represented by float, hence the results will be accurate for a
specific range. The integer numbers that are exactly representable by a 32-bit float
are up to roughly 16.7M. However, the reciprocal involved may cost extra accuracy,
so be wary with numbers even in the low millions.

Imagination Technologies Ltd Public 27

4. Performance Guidelines — Revision 1.0

Avoid Excessive Flow Control
Any instruction that changes what code is executed based on some condition
is considered to be flow control. Any flow control statements (if, ?, switch,
do, while, for) in a kernel may cause dynamic branching as discussed in the
Divergence - Dynamic Branchingsection.

PowerVR Rogue is very flexible and efficient with typical branching, but a branch
is always a branch and inherently inefficient in a parallel environment. Branching
should be avoided where practical, either with compile-time conditionals using the
pre-processor or by replacing them with an arithmetic statement instead. Note that
when conditionals are used to decide whether to access memory, the bandwidth
savings will normally far outweigh the cost of the branch.

Also note that when very few instructions are present in any path of a branch
statement, predicates will often be used instead, which results in fewer instructions
used overall. Whether this happens or not can be seen when using a disassembling
compiler, such as PVRShaderEditor.

As an alternative to using actual branches, it is often possible to use built-in
functions such as clamp, min, max, or even casting a bool to a float or int value
and performing arithmetic. Replacing branches with arithmetic can be tricky, but in
some cases can result in decent performance boosts when done well, as these do not
cause any kind of divergence among threads.

Avoid Barrier Directly after Local or Constant Memory Access
The hardware may have a latency of up to two cycles for calculating an array
index and using it to fetch shared memory from the Common Store (see the
Memory section). The compiler is generally able to hide this latency by rearranging
instructions to carry out arithmetic during this time. If a barrier is present
immediately after an access, as is often the case, then the compiler typically cannot
do this. To allow the compiler to hide the latency, as much arithmetic that does
not depend on the result of the access as possible should be performed before the
barrier is inserted.

Use Built-ins for Type Conversions
While generally not very expensive and sometimes can be completely hidden, the
compiler may sometimes require some additional instructions to convert between
different data types. When suitable, explicit pack/unpack or conversion functions
should generally be preferred to manual operations.

OpenCL

OpenCL provides a very clear and complete suite of type conversion functions.
When they are present, developers should use the convert_type() functions. When
conversions are required, follow the conventions:

• For conversions from int to float, round to zero (rtz) is fastst.

• For conversions from uint to float, round to zero (rtz) and round to negative
infinity (rtn) are fastest. Round fo positive infinity (rtp) is relatively fast, and
round to nearest even (rte) is slow.

28 Public Imagination Technologies Ltd

4. Performance Guidelines — Revision 1.0

Also useful are the as_type() functions, which are analogous to reinterpret casts in
C++. These allow a kernel write to access two types that are conceptually the same
size (e.g., int and char4) to be interpreted interchangeably. Types that are not
actually the same size on-chip have a higher cost than those that do, as additional
instructions are required to extract the correct bits. For example, a char4 uses 128-
bits of register space, whereas as_type() treats it as 32-bits. Packing instructions
need to be used to compensate, for example, as an int4 treated as float4 would
typically be a NO-OP.

OpenGL and OpenGL ES

For OpenGL and OpenGL ES, the relevant conversions are a suite of packXXXXXX
or unpackXXXXXX, and generally let developers pack and unpack floating point
values relevant to the graphics pipeline. Consult the specific API version for available
instructions.

Imagination Technologies Ltd Public 29

Measuring Peak Performance — Revision 1.0

Measuring Peak Performance
Explaining how to evaluate performance.

Throughput, in Operations-Per-Second, is one of the most important factors for
performance. The theoretical maximum throughput for an arithmetic operation can be
expressed as the following equation:

Each USC has 16 ALU Pipes that run in parallel. Rogue USCs are optimised to maximise
the number of scalar floating-point operations that can be processed on every cycle.
Each ALU Pipe can use one of the following paths at any time:

• The main unit which can execute up to two instructions in parallel, one of which
must be a 32-bit float, the other either a 32-bit float or any integer. The supported
native operations include multiply-and-add, multiply, and addition. This unit can
also perform packing and test operations on the results of these and a final move
operation.

• A 16-bit float Sum-of-Products unit, which can execute two operations of the form
(a * b) OP (c * d), where OP is either add, subtract, min, or max.

• A bitwise unit. The supported native operations include logic operations, logical shifts
and arithmetic shifts. In one cycle it is possible to perform up to two shifts with a
logical operation in between.

• A 32-bit complex floating-point unit that can execute a single operation. The
supported native operations include reciprocal, logarithmic, exponent, (cardinal)
sine operations, and arc tangent. The complex unit may require more than a
single instruction to execute these - for example, requiring range reduction before
executing sines. In general, these are many times more efficient than a full software
implementation.

The compiler implements other operations as routines on top of these, consuming
multiple cycles.

Example Device: 500MHz G6400
The table below shows the theoretical rates of throughput achievable for a 500MHz
G6400 device, with four USCs, for various simple operations.

Data type Operation Operations per
instruction

Cycles per
instruction

Theoretical
throughput of
0.5GHz, 4xUSD
G6400

16-bit float Sum-Of-Products 6 1 (0.5 × 4 × 16
× 6) ÷ 1 = 192
GFLOPS

float Multiply-and-Add 4 1 (0.5 × 4 × 16
× 4) ÷ 1 = 128
GFLOPS

float Multiply 2 1 (0.5 × 4 × 16 × 2)
÷ 1 = 64 GFLOPS

30 Public Imagination Technologies Ltd

Measuring Peak Performance — Revision 1.0

Data type Operation Operations per
instruction

Cycles per
instruction

Theoretical
throughput of
0.5GHz, 4xUSD
G6400

float Add 2 1 (0.5 × 4 × 16 × 2)
÷ 1 = 64 GFLOPS

float DivideA 1 4 (0.5 × 4 × 16 × 1)
÷ 4 = 8 GFLOPS

float DivideB 1 2 (0.5 × 4 × 16 × 1)
÷ 2 = 16 GFLOPS

int Multiply-and-Add 2 1 (0.5 × 4 × 16 × 2)
÷ 1 = 64 GILOPS

int Multiply 1 1 (0.5 × 4 × 16 × 1)
÷ 1 = 32 GILOPS

int Add 1 1 (0.5 × 4 × 16 × 1)
÷ 1 = 32 GILOPS

int Divide 1 30 (0.5 × 4 × 16 ×
1) ÷ 30 = 1.07
GILOPS

Note: By default, the compiler implements float division as two range reductions,
followed by reciprocal and multiplication instructions, requiring four cycles.

Note: For OpenGL GLSL shaders, OpenCL kernels with -cl-finite-math-only or –
cl-fast-relaxed-math, or RenderScript kernels with #pragma rs_fp_imprecise,
the compiler omits the range reduction, requiring only two cycles.

Measured Throughput
Actual measured peak throughput is likely to be less than the theoretical maximum,
due to system overheads such as dynamic clock scaling, system bandwidth,
rendering the user interface and driver/hardware setup costs. Actual kernels are
also unlikely to generate only arithmetic operations and may include control-flow
instructions and memory accesses.

Imagination Technologies Ltd Public 31

Complex Operations — Revision 1.0

Complex Operations
A list of compute functions and their performance cost.

The table below lists the costs for standard single-precision, floating-point functions. For
OpenCL, it assumes the -cl-fast-relaxed-math compilation flag.

A low cost represents less than 30 hardware instructions, and a high cost represents
more than 100 instructions. 30 to 100 instructions is considered a medium cost.

Function Cost
x+y Low
x*y Low
x/y Low
1/x Low
rsqrt(x), 1/sqrt(x) Low
sqrt(x) Low
cbrt(x) Low
hypot(x) Medium
exp(x) Medium
exp2(x) Low
exp10(x) Medium
expm1(x) Medium
log(x) Low
log2(x) Low
log10(x) Low
log1p(x) High
sin(x) Low
cos(x) Low
tan(x) High
sincos(x, cptr) Medium
asin(x) Medium
acos(x) Medium
asin(x) Medium
atan(x) Low
atan2(y, x) Medium
sinh(x) Medium
cosh(x) Medium
tanh(x) Medium
asinh(x) High
acosh(x) High
atanh(x) High
pow(x, y) High
fma(x, y, z) Low
frexp(x, exp) Low
ldexp(x, exp) Medium

32 Public Imagination Technologies Ltd

Complex Operations — Revision 1.0

Function Cost
logb(x) Low
ilogb(x) Low
fmod(x, y) Medium
remainder(x, y) High
remquo(x, y, iptr) High
modf(x, iptr) Low
fdim(x, y) Low
trunc(x) Low
round(x) Low
rint(x) Low
ceil(x) Low
floor(x) Low
asinpi(x) Medium
acospi(x) Medium
atan2pi(x, y) Medium
atanpi(x) Low
copysign(x, y) Low
sinpi(x) Medium
cospi(x) Medium
tanpi(x) Medium
fabs(x) Low
fmax(x, y) Low
fmin(x, y) Low
fract(x, ptr) Low
hypot(x, y) Medium
ldexp(x, y) Medium
mad(x, y, z) Low
maxmag(x, y) Low
minmag(x, y) Low
nan(x) Low
nextafter(x, y) Low
powr(x, y) High
pown(x, y) High
rootn(x, y) High
signbit(x) Low

Imagination Technologies Ltd Public 33

Optimisation Strategy Cheat Sheet — Revision 1.0

Optimisation Strategy Cheat Sheet
A brief list of abbreviated points on how to improve performance.

Choose the correct device for the task
• Graphics Core: Large datasets, simple flow, coherent data, large numbers of

computations in general

• CPU: complex flow control and branching, one to a few threads of execution, little
parallelism, one-shot tasks

Optimise the algorithm for convergence
• Avoid algorithsm with complex flow control or threads in a work-group that are idle

or exit early

• Define and execute the kernel for maximum data coherency of nearby items

• If having flow control, try to maximise the probabillity that all threads in a work-
group will take the same path

If possible, define a work-group size that is compile-time known and a multiple of 32
• Occupancy, register pressure, and many aggressive optimisations benefit from a

work-group size that is known at compiletime and is a multiple of 32

• Hitting both of these conditions maximises benefits but work singularly as well.
Compile-time work-group size enables several optimsations, while a work-group that
is a multiple of 32 maximises occupancy

Use a large dataset
• Provide enough work for the Graphics Core to schedule so that latency can be hidden

• A few thousands to a few millions should be the target

• Only consider less than a few thousands if the kernel is sufficiently long enough to
warrant setting up

Minimise bandwidth / maximise utilisation
• Use shared memory to minimise bandwidth use

• Use a healthy amount of airthmetic instructions interspersed with memory read/
writes to hide latency

• Schedule a lot of work simultaneously to assist the scheduler to hide memory fetch
latency

• Consider using arithmetic instead of using lookup tables

34 Public Imagination Technologies Ltd

Optimisation Strategy Cheat Sheet — Revision 1.0

Maximise occupancy
• Try to use temporary store (unified store) and shared memory (common store)

sensibly so as to not hurt occupancy. Registers are not infinite. Up to ~40 32-bit
registers per work-item should be sufficient.

• Minimise necessary temporaries.

• Use a healthy amoutn of arithmetic instructions interspersed with memory read/
writes to hide this latency. Consider using airthmetic versus lookups when bandwidth
is limited.

Balance minimising bandwidth use with maximising occupancy
• work-group size, shared memory use, and private memory use must all be tweaked

together

• Bandwidth should be the first target of optimisation in most applications

• However, too much shared or private memory use may force the compiler to reduce
utilisation

Trade precision for speed wherever possible
• Consider using half instead of float (OpenCL), mediump instead of highp (OpenGL

ES)

Access shared memory sequentially on 2D accesses, in row-major order
• Access sequential elements from kernel instances to maximise shared memory

access speed and minimise bank conflicts.

• Do not use stride when accessing values. Stride access in most cases directly
increases the number of conflicts. Maximum shared memory speed si achieved by
accessing sequential elements.

Access raw global memory linearly and textures in square patterns
• Accessing memory linearly helps cache locality and burst transfers

• Texture hardware is optimised for spatial locality of pixels

Balance the length of the kernel by aiming for a few tens to a few hundreds of hardware
instructions
• If the kernel is not long enough, the cost of setting up might end up being a big part

of overall execution time.

• Excessively long kernels, with thousands of instructions or long loops, are generally
inefficient. They can also starve other system components, notably Graphics.

Use shared objects with API Interoperability to avoid epensive redundant copies
• See what options and extensions are available to the combination of APIs being

used, such as EglImage

• Using a shared image or buffer and avoiding a round-trip to the CPU will almost
always prove a big gain

Imagination Technologies Ltd Public 35

Optimisation Strategy Cheat Sheet — Revision 1.0

Use burst transfers
• Help the compiler identify burst transfers by grouping reads and writes together,

making them easy to identify. Use explicit block-copy instructions wherever possible,
such as the OpenCL async_work_group_copy.

Try to hide common-store latency
• If possible, try to have a few unrelated calculations between accesses to shared

memory and their corresponding barrier syncs

36 Public Imagination Technologies Ltd

	Contents
	1. Introduction
	Document Overview
	Glossary

	2. A Modern System on Chip
	Single Instruction, Multiple Data
	Parallelism
	Divergence - Dynamic Branching

	Scalar or Vector Processing
	Vector
	Scalar

	3. Architecture Overview
	Compute Data Master
	Coarse Grain Scheduler
	Unified Shading Cluster
	Execution
	Memory

	USC Pair
	Texture Processing Unit
	L1 Mixed Cache
	System Level Cache

	4. Performance Guidelines
	Execute Tasks on the Most Appropriate Processor
	Choose a Suitable Device
	Identifying and Creating Work for the Graphics Core
	Sharing the Graphics Core between Compute and Graphics Tasks

	Minimise Bandwidth Usage
	Avoid Redundant Copies
	Group Memory Access Together
	Use Shared/Local Memory Sensibly
	Access Memory in Row-Major Order

	Maximise Utilisation and Occupancy
	Work on Large datasets
	Choose an Appropriate Work-Group Size
	Reduce Unified Store Usage (Private Memory)
	Reduce Common Store Usage (Shared/Local Memory)
	Be Aware of Padding

	Maximise Instruction Throughput
	Trade Precision for Speed
	Tweak Work for the Graphics Core
	Avoid Excessive Flow Control
	Avoid Barrier Directly after Local or Constant Memory Access
	Use Built-ins for Type Conversions

	Measuring Peak Performance
	Example Device: 500MHz G6400
	Measured Throughput

	Complex Operations
	Optimisation Strategy Cheat Sheet

