
 Public Imagination Technologies

PowerVR Hardware 1 Revision PowerVR SDK REL_18.2@5224491

PowerVR Hardware

Architecture Overview for Developers

Public. This publication contains proprietary information which is subject to change without notice
and is supplied 'as is' without warranty of any kind. Redistribution of this document is permitted

with acknowledgement of the source.

Filename : PowerVR Hardware.Architecture Overview for Developers

Version : PowerVR SDK REL_18.2@5224491 External Issue

Issue Date : 23 Nov 2018

Author : Imagination Technologies Limited

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491 2 Architecture Overview for Developers

Contents

1. Introduction ... 3

2. Overview of Modern 3D Graphics Architectures ... 4

2.1. Single Instruction, Multiple Data ... 4
2.1.1. Parallelism .. 4

2.2. Vector and Scalar Processing .. 5
2.2.1. Vector ... 5
2.2.2. Scalar ... 5

3. Overview of Graphics Architectures ... 6

3.1. Unified Architecture and Non-Unified Architectures ... 6
3.2. Overdraw .. 6
3.3. Common Architectures ... 6

3.3.1. Immediate Mode Rendering (IMR) ... 6
3.3.2. Tile Based Rendering (TBR) .. 7
3.3.3. Tile Based Deferred Rendering (TBDR) .. 7

4. What is PowerVR? .. 9

4.1. PowerVR Architecture Overview .. 9
4.1.1. Vertex Processing (Tiler) .. 9
4.1.2. Per-Tile Rasterization (Renderer) .. 9
4.1.3. On-Chip Buffers .. 10
4.1.4. PowerVR Shader Engine ... 10
4.1.5. Firmware... 10

4.2. Hidden Surface Removal Efficiency ... 10

5. Further Information ... 13

6. Contact Details .. 14

Appendix A. Glossary ... 15

List of Figures
Figure 1. SoC architecture overview ... 4

Figure 2. Non-unified vs unified architecture utilisation .. 6

Figure 3. IMR pipeline ... 7

Figure 4. TBR pipeline .. 7

Figure 5. TBDR pipeline .. 8

Figure 6. An example of a frame buffer divided into tiled regions .. 9

Figure 7. Example of overdraw with opaque objects .. 11

Figure 8. Shadowgun original frame ... 11

Figure 9. Shadowgun overdraw .. 12

Figure 10. Shadowgun PowerVR overdraw .. 12

 Public Imagination Technologies

PowerVR Hardware 3 Revision PowerVR SDK REL_18.2@5224491

1. Introduction
The purpose of this document is to provide developers with an overview of the PowerVR graphics
hardware architecture. The PowerVR architecture is based on a concept called Tile Based Deferred
Rendering, commonly shortened to TBDR. TBDR focuses on removing redundant operations as early
as possible in the graphics pipeline, minimising memory bandwidth use and power consumption while
improving processing throughput.

Note: This document assumes you are familiar with the 3D graphics programming pipeline of
OpenGL, DirectX or a similar 3D graphics programming API.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491 4 Architecture Overview for Developers

2. Overview of Modern 3D Graphics Architectures
As shown in Figure 1, a modern System on Chip (SoC) often integrates both a CPU and a Graphics
Processor. The CPU is optimised for processing sequential, heavily branched data sets that require
low memory latency, dedicating transistors to flow control and data caches.

The graphics core, on the other hand, is optimised for repetitive processing of large, unbranched data
sets, such as in 3D rendering. Transistors are dedicated to registers and arithmetic logic units rather
than data caches and flow control.

Control

Unified System Memory

Large Cache

Core

Core

F
e

w
 T

h
re

a
d

s
F

e
w

 T
h

re
a

d
s

CPU

Small

Cache

Small

Cache

Graphics Core

SIMD

Processing

Unit

Execution Queues

SIMD

Processing

Unit

M
a

n
y
 T

h
re

a
d

s

M
a

n
y
 T

h
re

a
d

s

Figure 1. SoC architecture overview

2.1. Single Instruction, Multiple Data

Typical CPUs are optimised to execute large, heavily branched tasks on a few pieces of data at a
time. A thread running on a CPU is often unique and is executed on its own, largely independent of all
other threads. Any given processing element will process in just a single thread. Typical numbers of
threads for a program on a CPU is commonly one to eight, up to a few tens at any period of time.

Graphics processors work on the principle that the exact same piece of code will be executed in
multiple threads, often numbering into the millions to handle the large screen resolutions of today‟s
devices. These threads differ only in input and normally follow the exact same execution steps.

To do this efficiently, each graphics processor executes the same instruction on multiple threads
concurrently, in a form of Single Instruction, Multiple Data (SIMD) processing. SIMD processors are
typically either scalar, which means operating on one element at a time, or vector, which means
operating on multiple elements at a time.

2.1.1. Parallelism

The main advantage of the SIMD architecture is that significant numbers of threads can be run in
parallel for a correctly structured application and this is done with extremely high efficiency. SIMD

 Public Imagination Technologies

PowerVR Hardware 5 Revision PowerVR SDK REL_18.2@5224491

architectures are usually capable of running many orders of magnitude more threads at once than a
typical CPU. SIMD is designed to operate on large coherent data sets and performs exceptionally well
at this type of task. Algorithms that operate independently on a large coherent data set, such as
graphics and image processing, are well suited for this processor type.

2.2. Vector and Scalar Processing

Modern graphics core architectures feature multiple processing units which are either vector or scalar
based. Both are supported by different versions of PowerVR architecture – Series 5 supporting
Vector, and Series 6, Series 7 and Series 8 supporting Scalar.

Scalar processing units operate on a single value per processing unit. Vector processing units work
on multiple values per processing unit.

2.2.1. Vector

Vector processing can be very efficient, as the execution unit can work on multiple values at the same
time rather than just one. For colour and vertex manipulation, this type of architecture is extremely
efficient. Traditional rendering operations are, therefore, well suited to this architecture as calculations
often operate on 3 or 4 elements at once.

The main drawback of vector architectures is that if scalar values or vectors smaller than the
processor expects are used, the additional processing element width is wasted. The most common
vector width is 4, which means that a shader or kernel mainly operating on 3 component vectors will
operate these instructions with 75% efficiency. Having a shader that works on only one scalar at a
time may take this number down to as low as 25%. This wastes energy and performance as parts of
the processor are not doing any work. It is possible to optimise for this by vectorising code, but this
introduces additional programmer burden.

2.2.2. Scalar

Scalar processors tend to be more flexible in terms of the operations that can be performed per
hardware cycle, as there is no need to fill the additional processing width with data. Whilst vector
architectures could potentially work on more values in the same silicon area, the actual number of
useful results per clock will usually be higher in scalar architectures for non-vectorised code. Scalar
architectures tend to be better suited to general purpose processing and more advanced rendering
techniques.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491 6 Architecture Overview for Developers

3. Overview of Graphics Architectures
Modern graphics architectures can be classified by the following types:

 Immediate Mode Renderer (IMR)

 Tile Based Renderer (TBR)

 Tile Based Deferred Renderer (TBDR)

Additionally, the shading architecture can be unified or non-unified. This section of the document
explains the key differences between these graphics architectures.

3.1. Unified Architecture and Non-Unified Architectures

Unified shader architecture executes shader programs, such as fragment and vertex shaders on the
same processing modules. A non-unified architecture uses separate dedicated processing modules
for vertex and fragment processing.

Figure 2 shows how a unified architecture can save power and increase performance compared to a
non-unified architecture. Unified architectures also scale much more easily to a given application,
whether it is fragment or vertex shader bound, as the unified processors will be used accordingly. All
PowerVR hardware platforms have unified shader architecture.

3.2. Overdraw

The term “overdraw” refers to wastefully colouring pixels that do not contribute to the final image
colour. Overdraw occurs when the pixels coloured for a drawn object are overwritten by another
object. Most applications submit draws as triangle meshes that can render in front of each other or
even intersect, making overdraw inevitable. To keep overdraw to a minimum, graphics cores
incorporate overdraw reduction techniques such as Early-Z testing. The efficiency of these techniques
can be very dependent on an application‟s draw call submission order.

3.3. Common Architectures

3.3.1. Immediate Mode Rendering (IMR)

In a traditional Immediate Mode Rendering (IMR) architecture, each submitted object travels through
the entire pipeline immediately, being transformed, rasterized and coloured before the next object is
processed. There are a number of inefficiencies associated with a simple IMR architecture that lead to
wasted processing power and memory bandwidth. Figure 3 identifies a typical IMR rendering pipeline.

Most modern IMR architectures utilise Early-Z techniques to perform depth tests early in the graphics
pipeline, reducing the amount of overdraw in a render (see Figure 3). Applications can only fully

Dedicated Shader Processing Modules

Time

F
ra

g
m

e
n

t
V

e
rt

e
x Processing power wasted

Stall

Unified Shader Processing Modules

U
n

if
ie

d

Time

Another frame

could fit here

Latency

hidden

Figure 2. Non-unified vs unified architecture utilisation

 Public Imagination Technologies

PowerVR Hardware 7 Revision PowerVR SDK REL_18.2@5224491

benefit from this optimisation if geometry is always submitted to the hardware in front to back order,
which requires per frame sorting for scenes with moving cameras and/or geometry.

As IMRs store all colour, depth and stencil buffers in system memory, regular Read-Modify-Write
operations to these buffers can quickly induce a large system memory bandwidth overhead. A
modern IMR will have a large graphics cache aiming to reduce system memory usage.

Vertex

Processing

Clip, Project

& Cull

Geometry

Data

Raster
Early Visibility

Test

Texture &

Shade
Alpha Test

Late Visibility

Test
Alpha Blend

Texture Data Depth Buffer Frame Buffer

S
y
s
te

m
 M

e
m

o
ry

Parameter

Cache

Figure 3. IMR pipeline

3.3.2. Tile Based Rendering (TBR)

Tiling is the process of binning post-transform geometry data into small rectangular regions, called
tiles. Rasterization and fragment processing then occurs on a per-tile basis. Figure 4 depicts the Tile
Based Rendering (TBR) pipeline. TBR consists of two phases namely vertex processing and per-tile
rasterization.

By processing a tile at a time, the size of on-chip buffers can be finely tuned to the tile size. The
graphics hardware can then use on-chip buffers for colour, depth and stencil buffer Read-Modify-Write
operations. This enables the hardware to avoid costly system memory transfer operations and,
instead, use high speed on-chip memory.

Although the TBR approach improves on the traditional IMR design, it does not attempt to reduce
overdraw. When rendering each tile, geometry is processed in submission order. Obscured fragments
will still be processed, resulting in redundant colour calculations and texture data fetches. Early-Z
techniques can be used to reduce overdraw. As with an IMR, applications must sort and submit
geometry from front to back to maximise the benefit of Early-Z overdraw reduction.

Vertex

Processing

Clip, Project

& Cull

Geometry

Data

Tiling

Texture Data Frame Buffer

O
n

-C
h

ip
 B

u
ff
e

rs

Primitive List

Vertex Data

S
y
s
te

m
 M

e
m

o
ry

Raster Visibility Test

On-Chip

Depth Buffer

Texture &

Shade
Alpha Test Alpha Blend

On-Chip

Colour Buffer

Figure 4. TBR pipeline

3.3.3. Tile Based Deferred Rendering (TBDR)

Figure 5 illustrates Tile Based Deferred Rendering (TBDR) pipeline. TBDR rendering splits the per-tile
rendering process into two stages namely Hidden Surface Removal (HSR) and deferred pixel
shading.

When a scene composed of three-dimensional objects is created, some of the objects and surfaces
may obscure all or parts of others. Hidden Surface Removal is the process by which the obscured
sections of objects in a scene are removed from the render.

Deferred rendering means that the architecture will defer all texturing and shading operations until all
objects that could be deferred, primarily opaque geometry, have been tested for visibility. The
efficiency of HSR is such that overdraw can be removed entirely for completely opaque renders. This
significantly reduces system memory bandwidth requirements.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491 8 Architecture Overview for Developers

Vertex

Processing

Clip, Project

& Cull

Geometry

Data

Tiling

Texture Data Frame Buffer

O
n

-C
h

ip
 B

u
ff
e

rs

Primitive List

Vertex Data

S
y
s
te

m
 M

e
m

o
ry

Raster

*1

HSR & Depth

Test

On-Chip

Depth Buffer

Texture &

Shade
Alpha Test Alpha Blend

On-Chip

Colour Buffer

Tag Buffer

*2

Figure 5. TBDR pipeline

 Public Imagination Technologies

PowerVR Hardware 9 Revision PowerVR SDK REL_18.2@5224491

4. What is PowerVR?
PowerVR is the name of the graphics hardware IP family from Imagination Technologies. All
generations are based on our patented Tile Based Deferred Rendering (TBDR) architecture. The core
design principle of the TBDR architecture is to keep the system memory bandwidth requirements of
the graphics hardware to a bare minimum.

As data transferred to and from system memory is the biggest cause of graphics hardware power
consumption, any reduction made in this area will allow the hardware to operate at a lower power.
Additionally, the reduction in system memory bandwidth use and the hardware optimisations
associated with it, such as using on-chip buffers, enables an application to execute its render at a
higher performance than other graphics architectures.

Due to the balance of low-power and high-performance, PowerVR graphics cores are dominant in the
mobile and embedded devices market.

4.1. PowerVR Architecture Overview

4.1.1. Vertex Processing (Tiler)

Each frame, the hardware processes submitted geometry by executing application-defined
transformations, such as vertex shaders, and then converting the resultant data to screen-space. The
Tile Accelerator (TA) then determines which tiles contain each transformed primitive. Once this is
known, per-tile lists are updated to track the primitives which fall within the bounds of each tile. The
transformed geometry and tile lists are both stored in an intermediate store called the Parameter
Buffer (PB). This store resides in system memory and contains all information needed to render the
tiles. Figure 6 provides an example of a frame buffer divided into tiled regions.

Figure 6. An example of a frame buffer divided into tiled regions

4.1.2. Per-Tile Rasterization (Renderer)

Rasterization and pixel colouring is done on a per-tile basis. When a tile operation begins, the
corresponding tile list is retrieved from the PB to identify the screen-space primitive data that needs to
be fetched. The Image Synthesis Processor (ISP) fetches the primitive data and performs Hidden
Surface Removal (HSR), along with depth and stencil tests. The ISP only fetches screen-space
position data for the geometry within the tile.

This is followed by the Texture and Shading Processor (TSP), which applies colouring operations, like
fragment shaders, to the visible pixels. Once a tile‟s render is complete, the colour data is written to
the framebuffer in system memory. This process is repeated until all tiles have been processed and
the frame buffer is complete.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491 10 Architecture Overview for Developers

4.1.3. On-Chip Buffers

Read-Modify-Write operations for the colour, depth and stencil buffers are performed using fast on-
chip memory instead of relying on repeated system memory access, as traditional IMRs do.
Attachments that the application has chosen to preserve, such as the colour buffer, will be written to
system memory.

4.1.4. PowerVR Shader Engine

The PowerVR shader engine is based on a massively multi-threaded and multi-tasking approach. It is
hardware managed and load balanced by using a data driven execution model to ensure the highest
possible utilisation efficiency. This approach schedules tasks based on data availability and enables
switching between independent processing tasks to ensure that data dependency stalls are avoided
at all costs.

4.1.5. Firmware

In many graphics architectures, hardware graphics events are handled on the CPU by the graphics
driver. All PowerVR graphics cores are managed by firmware, enabling the graphics processor to
handle the majority of high level graphics events internally. This approach keeps event handling
latency to a minimum and reduces the graphics driver‟s CPU overhead.

4.2. Hidden Surface Removal Efficiency

Figure 7 demonstrates

Overdraw. In a traditional IMR architecture, this scene would cause green and red colours to be
calculated for the sphere and cube respectively in the areas that are occluded by the yellow cone. In
architectures that include Early-Z testing, an application can avoid some overdraw by submitting draw
calls from front to back. Submitting in this order builds up the depth buffer so occluded fragments
further from the camera can be rejected early. This creates additional burden for the application, as
draws have to be sorted every time the camera or objects within the scene move. Additionally, it
doesn‟t remove all overdraw as sorting per-draw is very coarse. For example, it doesn‟t resolve
overdraw caused by object intersection. It also prevents the application from sorting draw calls to
keep graphics API state changes to a minimum.

In the PowerVR TBDR, Hidden Surface Removal (HSR) will completely remove overdraw regardless
of draw call submission order.

Dedicated Shader Processing Modules

Time

F
ra

g
m

e
n

t
V

e
rt

e
x Processing power wasted

Stall

Unified Shader Processing Modules

U
n

if
ie

d

Time

Another frame

could fit here

Latency

hidden

Figure 2. Non-unified vs unified architecture utilisation

 Public Imagination Technologies

PowerVR Hardware 11 Revision PowerVR SDK REL_18.2@5224491

Figure 7. Example of overdraw with opaque objects

Figure 8 is a screen capture from MadFinger Game‟s Shadowgun. Figure 9 highlights the amount of
overdraw in the same scene, ignoring Early-Z or HSR optimisations that may be applied by a graphics
core. The closer to white a pixel is, the more overdraw is present.

In this frame, 4.7 fragments are coloured on average per screen pixel. On a PowerVR device, 1.2
fragments are coloured on average per screen pixel, which is 75% fewer fragments than the
application submitted. Figure 10 shows the amount of “PowerVR overdraw” (post-HSR) for the same
captured frame. The render doesn‟t achieve a 1:1 ratio between coloured fragments per screen pixel
as the scene isn‟t completely opaque, because blended UI elements are contributing to the average.

Figure 8. Shadowgun original frame

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491 12 Architecture Overview for Developers

Figure 9. Shadowgun overdraw

Figure 10. Shadowgun PowerVR overdraw

 Public Imagination Technologies

PowerVR Hardware 13 Revision PowerVR SDK REL_18.2@5224491

5. Further Information
Over the years, there have been many generations of the PowerVR hardware family. All modern
PowerVR generations are based on the Tile Based Deferred Rendering architecture outlined in
Section 3.3.3. These generations (Series5, Series5XT, Series6, Series6XT, Series 7 and Series 8XE)
are commercially available and actively targeted by 3D graphics developers.

For more information regarding the PowerVR hardware family, refer to the Imagination website:

http://www.imgtec.com/powervr/

For more detailed information regarding the PowerVR hardware architecture, contact us.

http://www.imgtec.com/powervr/

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491 14 Architecture Overview for Developers

6. Contact Details
For further support, visit our forum:

http://forum.imgtec.com

Or file a ticket in our support system:

https://pvrsupport.imgtec.com

To learn more about our PowerVR Graphics SDK and Insider programme, please visit:

http://www.powervrinsider.com

For general enquiries, please visit our website:

http://imgtec.com/corporate/contactus.asp

http://forum.imgtec.com/
https://pvrsupport.imgtec.com/
http://www.powervrinsider.com/
http://imgtec.com/corporate/contactus.asp

 Public Imagination Technologies

PowerVR Hardware 15 Revision PowerVR SDK REL_18.2@5224491

Appendix A. Glossary

Term Meaning

ALU Arithmetic Logic Unit. It is responsible for processing shader
instructions.

Early-Z An umbrella term for a collection of optimisations commonly used by
graphics cores. Early-Z techniques reduce overdraw by performing
depth tests early in the graphics pipeline.

firmware A dedicated program running on the graphics core that handles
hardware events (for example, a tile processing operation
completing).

fragment The data necessary to calculate a pixel colour. Multiple fragments
may contribute to the colour of a pixel (for example, when a
transparent object is drawn in front of an opaque object).

graphics pipeline The sequence of processing stages within a graphics core that must
be executed to render an image.

HSR Hidden Surface Removal.

IMR Immediate Mode Renderer.

ISP Image Synthesis Processor.

overdraw The term “overdraw” refers to wastefully colouring pixels that do not
contribute to the final image colour.

SIMD Single Instruction, Multiple Data. Concurrent execution of a single
instruction across multiple ALUs, where each ALU has unique input
and output.

scalar [shader architecture] A shader architecture in which an ALU processes a single value at a
time.

pixel The smallest addressable area of a framebuffer.

rasterization The process of determining which pixels a given primitive touches.

render The process of converting application submitted data into coloured
pixels that can be stored in the framebuffer.

renderer The tile processing stage of a TBDR pipeline. This includes
rasterization and fragment shading.

TA Tile Accelerator.

TBR Tile Based Renderer.

TBDR Tile Based Deferred Renderer.

tile A rectangular group of pixels. In TBR and TBDR architectures, the
framebuffer is broken into many tiles. The tile size of each PowerVR
graphics core is decided during hardware design, typically 32x32
pixels.

tiler The vertex shading, clipping, projection, culling and tiling stages of a
TBDR pipeline.

TSP Texture and Shading Processor.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491 16 Architecture Overview for Developers

Term Meaning

vector [shader architecture] A shader architecture in which an ALU processes multiple values
simultaneously. Vector architectures commonly have a width of 4,
allowing the ALU to calculate values for the „x‟, „y‟, „z‟ and „w‟
components of a vector data type.

	1. Introduction
	2. Overview of Modern 3D Graphics Architectures
	2.1. Single Instruction, Multiple Data
	2.1.1. Parallelism

	2.2. Vector and Scalar Processing
	2.2.1. Vector
	2.2.2. Scalar

	3. Overview of Graphics Architectures
	3.1. Unified Architecture and Non-Unified Architectures
	3.2. Overdraw
	3.3. Common Architectures
	3.3.1. Immediate Mode Rendering (IMR)
	3.3.2. Tile Based Rendering (TBR)
	3.3.3. Tile Based Deferred Rendering (TBDR)

	4. What is PowerVR?
	4.1. PowerVR Architecture Overview
	4.1.1. Vertex Processing (Tiler)
	4.1.2. Per-Tile Rasterization (Renderer)
	4.1.3. On-Chip Buffers
	4.1.4. PowerVR Shader Engine
	4.1.5. Firmware

	4.2. Hidden Surface Removal Efficiency

	5. Further Information
	6. Contact Details
	Appendix A. Glossary

