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1. Introduction 
The purpose of this document is to provide developers with an overview of the PowerVR graphics 
hardware architecture. The PowerVR architecture is based on a concept called Tile Based Deferred 
Rendering, commonly shortened to TBDR. TBDR focuses on removing redundant operations as early 
as possible in the graphics pipeline, minimising memory bandwidth use and power consumption while 
improving processing throughput.  

 

Note: This document assumes you are familiar with the 3D graphics programming pipeline of 
OpenGL, DirectX or a similar 3D graphics programming API. 
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2. Overview of Modern 3D Graphics Architectures 
As shown in Figure 1, a modern System on Chip (SoC) often integrates both a CPU and a Graphics 
Processor. The CPU is optimised for processing sequential, heavily branched data sets that require 
low memory latency, dedicating transistors to flow control and data caches.  

The graphics core, on the other hand, is optimised for repetitive processing of large, unbranched data 
sets, such as in 3D rendering. Transistors are dedicated to registers and arithmetic logic units rather 
than data caches and flow control. 
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Figure 1. SoC architecture overview 

2.1. Single Instruction, Multiple Data 

Typical CPUs are optimised to execute large, heavily branched tasks on a few pieces of data at a 
time. A thread running on a CPU is often unique and is executed on its own, largely independent of all 
other threads. Any given processing element will process in just a single thread. Typical numbers of 
threads for a program on a CPU is commonly one to eight, up to a few tens at any period of time. 

Graphics processors work on the principle that the exact same piece of code will be executed in 
multiple threads, often numbering into the millions to handle the large screen resolutions of today‟s 
devices. These threads differ only in input and normally follow the exact same execution steps.  

To do this efficiently, each graphics processor executes the same instruction on multiple threads 
concurrently, in a form of Single Instruction, Multiple Data (SIMD) processing. SIMD processors are 
typically either scalar, which means operating on one element at a time, or vector, which means 
operating on multiple elements at a time. 

2.1.1. Parallelism 

The main advantage of the SIMD architecture is that significant numbers of threads can be run in 
parallel for a correctly structured application and this is done with extremely high efficiency. SIMD 
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architectures are usually capable of running many orders of magnitude more threads at once than a 
typical CPU. SIMD is designed to operate on large coherent data sets and performs exceptionally well 
at this type of task. Algorithms that operate independently on a large coherent data set, such as 
graphics and image processing, are well suited for this processor type. 

2.2. Vector and Scalar Processing 

Modern graphics core architectures feature multiple processing units which are either vector or scalar 
based. Both are supported by different versions of PowerVR architecture – Series 5 supporting 
Vector, and Series 6, Series 7 and Series 8 supporting Scalar.  

Scalar processing units operate on a single value per processing unit. Vector processing units work 
on multiple values per processing unit.  

2.2.1. Vector 

Vector processing can be very efficient, as the execution unit can work on multiple values at the same 
time rather than just one. For colour and vertex manipulation, this type of architecture is extremely 
efficient. Traditional rendering operations are, therefore, well suited to this architecture as calculations 
often operate on 3 or 4 elements at once. 

The main drawback of vector architectures is that if scalar values or vectors smaller than the 
processor expects are used, the additional processing element width is wasted. The most common 
vector width is 4, which means that a shader or kernel mainly operating on 3 component vectors will 
operate these instructions with 75% efficiency. Having a shader that works on only one scalar at a 
time may take this number down to as low as 25%. This wastes energy and performance as parts of 
the processor are not doing any work. It is possible to optimise for this by vectorising code, but this 
introduces additional programmer burden.  

2.2.2. Scalar 

Scalar processors tend to be more flexible in terms of the operations that can be performed per 
hardware cycle, as there is no need to fill the additional processing width with data. Whilst vector 
architectures could potentially work on more values in the same silicon area, the actual number of 
useful results per clock will usually be higher in scalar architectures for non-vectorised code. Scalar 
architectures tend to be better suited to general purpose processing and more advanced rendering 
techniques. 
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3. Overview of Graphics Architectures 
Modern graphics architectures can be classified by the following types: 

  

 Immediate Mode Renderer (IMR) 

 Tile Based Renderer (TBR) 

 Tile Based Deferred Renderer (TBDR) 

 

Additionally, the shading architecture can be unified or non-unified. This section of the document 
explains the key differences between these graphics architectures. 

3.1. Unified Architecture and Non-Unified Architectures 

Unified shader architecture executes shader programs, such as fragment and vertex shaders on the 
same processing modules. A non-unified architecture uses separate dedicated processing modules 
for vertex and fragment processing.  

Figure 2 shows how a unified architecture can save power and increase performance compared to a 
non-unified architecture. Unified architectures also scale much more easily to a given application, 
whether it is fragment or vertex shader bound, as the unified processors will be used accordingly. All 
PowerVR hardware platforms have unified shader architecture. 

 

3.2. Overdraw 

The term “overdraw” refers to wastefully colouring pixels that do not contribute to the final image 
colour. Overdraw occurs when the pixels coloured for a drawn object are overwritten by another 
object. Most applications submit draws as triangle meshes that can render in front of each other or 
even intersect, making overdraw inevitable. To keep overdraw to a minimum, graphics cores 
incorporate overdraw reduction techniques such as Early-Z testing. The efficiency of these techniques 
can be very dependent on an application‟s draw call submission order. 

3.3. Common Architectures 

3.3.1. Immediate Mode Rendering (IMR) 

In a traditional Immediate Mode Rendering (IMR) architecture, each submitted object travels through 
the entire pipeline immediately, being transformed, rasterized and coloured before the next object is 
processed. There are a number of inefficiencies associated with a simple IMR architecture that lead to 
wasted processing power and memory bandwidth. Figure 3 identifies a typical IMR rendering pipeline. 

Most modern IMR architectures utilise Early-Z techniques to perform depth tests early in the graphics 
pipeline, reducing the amount of overdraw in a render (see Figure 3). Applications can only fully 
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Figure 2. Non-unified vs unified architecture utilisation 
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benefit from this optimisation if geometry is always submitted to the hardware in front to back order, 
which requires per frame sorting for scenes with moving cameras and/or geometry.  

As IMRs store all colour, depth and stencil buffers in system memory, regular Read-Modify-Write 
operations to these buffers can quickly induce a large system memory bandwidth overhead. A 
modern IMR will have a large graphics cache aiming to reduce system memory usage.  
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Figure 3. IMR pipeline 

3.3.2. Tile Based Rendering (TBR) 

Tiling is the process of binning post-transform geometry data into small rectangular regions, called 
tiles. Rasterization and fragment processing then occurs on a per-tile basis. Figure 4 depicts the Tile 
Based Rendering (TBR) pipeline. TBR consists of two phases namely vertex processing and per-tile 
rasterization. 

By processing a tile at a time, the size of on-chip buffers can be finely tuned to the tile size. The 
graphics hardware can then use on-chip buffers for colour, depth and stencil buffer Read-Modify-Write 
operations. This enables the hardware to avoid costly system memory transfer operations and, 
instead, use high speed on-chip memory. 

Although the TBR approach improves on the traditional IMR design, it does not attempt to reduce 
overdraw. When rendering each tile, geometry is processed in submission order. Obscured fragments 
will still be processed, resulting in redundant colour calculations and texture data fetches. Early-Z 
techniques can be used to reduce overdraw. As with an IMR, applications must sort and submit 
geometry from front to back to maximise the benefit of Early-Z overdraw reduction. 

 

Vertex 

Processing

Clip, Project 

& Cull

Geometry 

Data

Tiling

Texture Data Frame Buffer

O
n

-C
h

ip
 B

u
ff
e

rs

Primitive List

Vertex Data

S
y
s
te

m
 M

e
m

o
ry

Raster Visibility Test

On-Chip 

Depth Buffer

Texture & 

Shade
Alpha Test Alpha Blend

On-Chip 

Colour Buffer

 

Figure 4. TBR pipeline 

3.3.3. Tile Based Deferred Rendering (TBDR) 

Figure 5 illustrates Tile Based Deferred Rendering (TBDR) pipeline. TBDR rendering splits the per-tile 
rendering process into two stages namely Hidden Surface Removal (HSR) and deferred pixel 
shading.  

When a scene composed of three-dimensional objects is created, some of the objects and surfaces 
may obscure all or parts of others. Hidden Surface Removal is the process by which the obscured 
sections of objects in a scene are removed from the render.  

Deferred rendering means that the architecture will defer all texturing and shading operations until all 
objects that could be deferred, primarily opaque geometry, have been tested for visibility. The 
efficiency of HSR is such that overdraw can be removed entirely for completely opaque renders. This 
significantly reduces system memory bandwidth requirements. 
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Figure 5. TBDR pipeline 
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4. What is PowerVR? 
PowerVR is the name of the graphics hardware IP family from Imagination Technologies. All 
generations are based on our patented Tile Based Deferred Rendering (TBDR) architecture. The core 
design principle of the TBDR architecture is to keep the system memory bandwidth requirements of 
the graphics hardware to a bare minimum.  

As data transferred to and from system memory is the biggest cause of graphics hardware power 
consumption, any reduction made in this area will allow the hardware to operate at a lower power. 
Additionally, the reduction in system memory bandwidth use and the hardware optimisations 
associated with it, such as using on-chip buffers, enables an application to execute its render at a 
higher performance than other graphics architectures.  

Due to the balance of low-power and high-performance, PowerVR graphics cores are dominant in the 
mobile and embedded devices market. 

4.1. PowerVR Architecture Overview 

4.1.1. Vertex Processing (Tiler) 

Each frame, the hardware processes submitted geometry by executing application-defined 
transformations, such as vertex shaders, and then converting the resultant data to screen-space. The 
Tile Accelerator (TA) then determines which tiles contain each transformed primitive. Once this is 
known, per-tile lists are updated to track the primitives which fall within the bounds of each tile. The 
transformed geometry and tile lists are both stored in an intermediate store called the Parameter 
Buffer (PB). This store resides in system memory and contains all information needed to render the 
tiles. Figure 6 provides an example of a frame buffer divided into tiled regions. 

 

 

Figure 6. An example of a frame buffer divided into tiled regions 

4.1.2. Per-Tile Rasterization (Renderer) 

Rasterization and pixel colouring is done on a per-tile basis. When a tile operation begins, the 
corresponding tile list is retrieved from the PB to identify the screen-space primitive data that needs to 
be fetched. The Image Synthesis Processor (ISP) fetches the primitive data and performs Hidden 
Surface Removal (HSR), along with depth and stencil tests. The ISP only fetches screen-space 
position data for the geometry within the tile.  

This is followed by the Texture and Shading Processor (TSP), which applies colouring operations, like 
fragment shaders, to the visible pixels. Once a tile‟s render is complete, the colour data is written to 
the framebuffer in system memory. This process is repeated until all tiles have been processed and 
the frame buffer is complete. 
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4.1.3. On-Chip Buffers 

Read-Modify-Write operations for the colour, depth and stencil buffers are performed using fast on-
chip memory instead of relying on repeated system memory access, as traditional IMRs do. 
Attachments that the application has chosen to preserve, such as the colour buffer, will be written to 
system memory.  

4.1.4. PowerVR Shader Engine 

The PowerVR shader engine is based on a massively multi-threaded and multi-tasking approach. It is 
hardware managed and load balanced by using a data driven execution model to ensure the highest 
possible utilisation efficiency. This approach schedules tasks based on data availability and enables 
switching between independent processing tasks to ensure that data dependency stalls are avoided 
at all costs. 

4.1.5. Firmware 

In many graphics architectures, hardware graphics events are handled on the CPU by the graphics 
driver. All PowerVR graphics cores are managed by firmware, enabling the graphics processor to 
handle the majority of high level graphics events internally. This approach keeps event handling 
latency to a minimum and reduces the graphics driver‟s CPU overhead.  

4.2. Hidden Surface Removal Efficiency 

Figure 7 demonstrates  

Overdraw. In a traditional IMR architecture, this scene would cause green and red colours to be 
calculated for the sphere and cube respectively in the areas that are occluded by the yellow cone. In 
architectures that include Early-Z testing, an application can avoid some overdraw by submitting draw 
calls from front to back. Submitting in this order builds up the depth buffer so occluded fragments 
further from the camera can be rejected early. This creates additional burden for the application, as 
draws have to be sorted every time the camera or objects within the scene move. Additionally, it 
doesn‟t remove all overdraw as sorting per-draw is very coarse. For example, it doesn‟t resolve 
overdraw caused by object intersection. It also prevents the application from sorting draw calls to 
keep graphics API state changes to a minimum. 

In the PowerVR TBDR, Hidden Surface Removal (HSR) will completely remove overdraw regardless 
of draw call submission order. 
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Figure 2. Non-unified vs unified architecture utilisation 
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Figure 7. Example of overdraw with opaque objects 

 

 

Figure 8 is a screen capture from MadFinger Game‟s Shadowgun. Figure 9 highlights the amount of 
overdraw in the same scene, ignoring Early-Z or HSR optimisations that may be applied by a graphics 
core. The closer to white a pixel is, the more overdraw is present. 

In this frame, 4.7 fragments are coloured on average per screen pixel. On a PowerVR device, 1.2 
fragments are coloured on average per screen pixel, which is 75% fewer fragments than the 
application submitted. Figure 10 shows the amount of “PowerVR overdraw” (post-HSR) for the same 
captured frame. The render doesn‟t achieve a 1:1 ratio between coloured fragments per screen pixel 
as the scene isn‟t completely opaque, because blended UI elements are contributing to the average. 

 

 

Figure 8. Shadowgun original frame 
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Figure 9. Shadowgun overdraw  

 

 

Figure 10. Shadowgun PowerVR overdraw 
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5. Further Information 
Over the years, there have been many generations of the PowerVR hardware family. All modern 
PowerVR generations are based on the Tile Based Deferred Rendering architecture outlined in 
Section 3.3.3. These generations (Series5, Series5XT, Series6, Series6XT, Series 7 and Series 8XE) 
are commercially available and actively targeted by 3D graphics developers. 

For more information regarding the PowerVR hardware family, refer to the Imagination website: 

http://www.imgtec.com/powervr/ 

For more detailed information regarding the PowerVR hardware architecture, contact us.  

 

http://www.imgtec.com/powervr/
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6. Contact Details 
For further support, visit our forum: 

http://forum.imgtec.com 

 

Or file a ticket in our support system: 

https://pvrsupport.imgtec.com 

 

To learn more about our PowerVR Graphics SDK and Insider programme, please visit: 

http://www.powervrinsider.com 

 

For general enquiries, please visit our website: 

http://imgtec.com/corporate/contactus.asp 

 

http://forum.imgtec.com/
https://pvrsupport.imgtec.com/
http://www.powervrinsider.com/
http://imgtec.com/corporate/contactus.asp
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Appendix A. Glossary 
 

Term Meaning 

ALU Arithmetic Logic Unit. It is responsible for processing shader 
instructions. 

Early-Z An umbrella term for a collection of optimisations commonly used by 
graphics cores. Early-Z techniques reduce overdraw by performing 
depth tests early in the graphics pipeline. 

firmware A dedicated program running on the graphics core that handles 
hardware events (for example, a tile processing operation 
completing). 

fragment The data necessary to calculate a pixel colour. Multiple fragments 
may contribute to the colour of a pixel (for example, when a 
transparent object is drawn in front of an opaque object). 

graphics pipeline The sequence of processing stages within a graphics core that must 
be executed to render an image. 

HSR Hidden Surface Removal. 

IMR Immediate Mode Renderer. 

ISP Image Synthesis Processor. 

overdraw The term “overdraw” refers to wastefully colouring pixels that do not 
contribute to the final image colour. 

SIMD Single Instruction, Multiple Data. Concurrent execution of a single 
instruction across multiple ALUs, where each ALU has unique input 
and output. 

scalar [shader architecture] A shader architecture in which an ALU processes a single value at a 
time. 

pixel The smallest addressable area of a framebuffer. 

rasterization The process of determining which pixels a given primitive touches. 

render The process of converting application submitted data into coloured 
pixels that can be stored in the framebuffer. 

renderer The tile processing stage of a TBDR pipeline. This includes 
rasterization and fragment shading. 

TA Tile Accelerator. 

TBR Tile Based Renderer. 

TBDR Tile Based Deferred Renderer. 

tile A rectangular group of pixels. In TBR and TBDR architectures, the 
framebuffer is broken into many tiles. The tile size of each PowerVR 
graphics core is decided during hardware design, typically 32x32 
pixels. 

tiler The vertex shading, clipping, projection, culling and tiling stages of a 
TBDR pipeline. 

TSP Texture and Shading Processor. 
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Term Meaning 

vector [shader architecture] A shader architecture in which an ALU processes multiple values 
simultaneously. Vector architectures commonly have a width of 4, 
allowing the ALU to calculate values for the „x‟, „y‟, „z‟ and „w‟ 
components of a vector data type. 
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