
 Public Imagination Technologies

PowerVR 1 Revision PowerVR SDK REL_18.2@5224491a

PowerVR

Performance Recommendations

Public. This publication contains proprietary information which is subject to change without notice
and is supplied 'as is' without warranty of any kind. Redistribution of this document is permitted

with acknowledgement of the source.

Filename : PowerVR.Performance Recommendations

Version : PowerVR SDK REL_18.2@5224491a External Issue

Issue Date : 23 Nov 2018

Author : Imagination Technologies Limited

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 2 Performance Recommendations

Contents

1. Introduction ... 5

1.1. Document Overview ... 5
1.2. The Golden Rules ... 5
1.3. Optimal Development Approach... 5
1.4. Understanding Rendering Bottlenecks ... 5
1.5. Optimising Applications for PowerVR Graphics Cores... 6

1.5.1. Know the target .. 6
1.5.2. Analysing an Application‟s Performance .. 7

2. Optimising Geometry ... 8

2.1. Geometry Complexity ... 8
2.2. Primitive Type ... 8
2.3. Data Types ... 8
2.4. Interleaving Attributes ... 9
2.5. Vertex Buffer Objects – OpenGL ES .. 9
2.6. Draw Call Size .. 10
2.7. Triangle Size ... 10
2.8. Face Culling .. 10
2.9. Sorting Geometry.. 10

2.9.1. Distance.. 10
2.9.2. Render state ... 10

2.10. Z Pre-pass .. 11

3. Optimising Textures ... 12

3.1. Texture size .. 12
3.1.1. Demystifying NPOT .. 12

3.2. Texture Compression ... 13
3.2.1. PVRTexTool ... 13
3.2.2. Why use PVRTC? .. 15
3.2.3. Image file compression versus texture compression ... 15

3.3. Mipmapping .. 17
3.3.1. Advantages .. 17
3.3.2. Generation .. 17
3.3.3. Filtering ... 17

3.4. Texture Sampling.. 18
3.4.1. Texture filtering ... 18
3.4.2. Texel Fetch ... 18
3.4.3. Dependent texture read.. 18
3.4.4. Wide floating point textures .. 19

3.5. Texture Uploading .. 19
3.5.1. Texture warm-up .. 19
3.5.2. Texture formats and precision .. 19

3.6. Mathematical Look-ups .. 19

4. Optimising Shaders .. 21

4.1. PVRShaderEditor ... 21
4.1.1. GLSL optimiser ... 22

4.2. Choose the Right Algorithm .. 22
4.3. Know Your Spaces ... 22
4.4. Flow Control .. 22

4.4.1. Discard ... 23
4.4.2. Shader group vote – OpenGL ES .. 23

4.5. Demystifying Precision ... 23
4.5.1. Highp .. 24
4.5.2. Mediump ... 24
4.5.3. Lowp ... 24
4.5.4. Swizzling... 24

 Public Imagination Technologies

PowerVR 3 Revision PowerVR SDK REL_18.2@5224491a

4.5.5. Attributes .. 25
4.5.6. Varyings.. 25
4.5.7. Samplers .. 25
4.5.8. Uniforms ... 25
4.5.9. Conversion costs .. 25

4.6. Scalar Operations ... 26
4.7. Constant Data in Shaders .. 26
4.8. Geometry / Tessellation Shaders ... 26

5. Optimising Specific Techniques ... 27

5.1. Using Multiple Render Targets Efficiently .. 27
5.1.1. Recommended HDR texture formats ... 27

5.2. Preferred Lighting Solution ... 29
5.3. Preferred Shadowing Solution .. 29
5.4. MSAA Performance .. 29
5.5. Preferred Analytical AA Solution .. 30
5.6. Screen Space Ambient Occlusion .. 30
5.7. Ray-Marching ... 30
5.8. Separable Kernels .. 30
5.9. Efficient Sprite Rendering ... 31
5.10. Physically Based Rendering and Per-Pixel LOD – Rogue Performance 32

6. OpenGL ES Specific Optimisations .. 34

6.1. glClears and glColorMask .. 34
6.1.1. Invalidating frame buffer attachments .. 34

6.2. Draw*Indirect and MultiDraw*IndirectEXT .. 34
6.2.1. Draw*Indirect .. 34
6.2.2. MultiDraw*IndirectEXT ... 35
6.2.3. Instancing ... 35

6.3. PBO Texture Uploads ... 35
6.3.1. Optimal texture updates with PBOs ... 35

6.4. Rogue Specific.. 36
6.4.1. Using glTexStorage2D and glTexStorage3D ... 36

6.5. VAOs, UBOs, Transform Feedback Buffers and SSBOs in OpenGL ES 36
6.5.1. Vertex Array Objects (VAOs) ... 36
6.5.2. Uploading uniforms (Uniform Buffer Objects) .. 36
6.5.3. Transform buffer objects .. 37
6.5.4. SSBOs – Shader Storage Buffer Objects .. 37

6.6. Synchronisation .. 37
6.6.1. Multithreading in OpenGL ES .. 38

6.7. Frame-buffer Down Sampling ... 38
6.8. Pixel Local Storage Extension .. 38

7. Vulkan Specific Optimisations .. 40

7.1. A Brief Introduction ... 40
7.2. The PowerVR with Vulkan Advantage ... 40

7.2.1. Explicitly declared dependencies ... 40
7.2.2. Fine-grained synchronisation ... 40
7.2.3. Render passes ... 40
7.2.4. Explicit render state .. 40

7.3. Memory Types .. 41
7.4. Pipelines ... 41

7.4.1. Pipeline barriers ... 41
7.4.2. Pipeline caching ... 42
7.4.3. Derivative pipelines .. 42

7.5. Descriptor Sets ... 42
7.5.1. Multiple descriptor sets ... 42
7.5.2. Pooled descriptor sets .. 42

7.6. Push Constants .. 42
7.7. Queues ... 43
7.8. Command Buffers ... 43

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 4 Performance Recommendations

7.8.1. Command buffer usage flags ... 43
7.8.2. Transient command buffers.. 43
7.8.3. Secondary command buffers ... 44

7.9. Render Pass ... 44
7.9.1. Sub-passes .. 44
7.9.2. Load and store ops ... 44
7.9.3. Transient attachments .. 44
7.9.4. Optimal number of attachments ... 45
7.9.5. Attachment order .. 45

7.10. MSAA .. 45
7.11. Image Layout .. 45

8. Contact Details .. 46

 Public Imagination Technologies

PowerVR 5 Revision PowerVR SDK REL_18.2@5224491a

1. Introduction
PowerVR SGX and PowerVR Rogue are Graphics Core architectures from Imagination Technologies
designed specifically for shader-based APIs such as OpenGL ES 2.0, 3.x, and Vulkan. Due to their
scalable architectures, the PowerVR family spans a huge performance range.

1.1. Document Overview

The purpose of this document is to serve as recommendation and advice for developers who wish to
get the best graphics performance from a PowerVR SGX or PowerVR Rogue enabled device.
Throughout the document, the specific recommendations for PowerVR SGX and PowerVR Rogue are
marked as appropriate.

1.2. The Golden Rules

The Golden Rules are a set of more generic performance recommendations that developers should
seek to implement, as well as observe as many of the techniques and principles mentioned. This
should help produce well-behaved, high performance graphics applications. These rules are detailed
in the document entitled “PowerVR Performance Recommendations: The Golden Rules”, which is
supplied with the PowerVR SDK.

1.3. Optimal Development Approach

It is crucial to adopt the practices identified in this document from the very start of development to
save much time and effort later. Once an application is implemented to a near-final state, the process
of iteration shown below should be adopted. The main benefit of this approach is that time is not
wasted, and graphics quality is not comprised by making changes that do not benefit performance.

Profile the

application

Identify a

bottleneck

Optimise the

bottleneck

Test the

optimisation

Cyclical profiling

1.4. Understanding Rendering Bottlenecks

It is a common misconception that the same actions can speed up any application. For example:

 Polygon count reduction: If the bottleneck of the application is fragment processing or texture
bandwidth then the only result of this action will be to reduce the graphical quality of the
application without improving rendering speed. In fact, if simpler models cause more of the
render target to be covered by a material with complex fragments, then this can slow down an
application.

 Reduce rendering resolution: In this case, if the fragment processing workload of the
application is not the bottleneck then this will also only serve to reduce the quality of the
graphics in the application without improving performance.

It is only once the limiting factor of an application is determined by profiling with the correct tools, that
optimisation work should be applied. It is also important to realise that once work has been done then
the application requires re-profiling to determine whether the work improved performance, and

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 6 Performance Recommendations

whether the bottleneck is still at the same stage of the graphics pipeline. It may be that the limiting
stage in rendering is now at a different place and further optimisation should be targeted accordingly.

1.5. Optimising Applications for PowerVR Graphics Cores

1.5.1. Know the target

Before diving into tools or performance recommendations, it is important to consider the capabilities
and characteristics of the target device.

Graphics architecture

A basic understanding of how API calls are processed by the driver, inserted into the graphics
hardware‟s command stream, and converted into coloured pixels goes a long way. It provides an
immediate appreciation of why certain graphics API calls are costly and how submitted calls will map
to the graphics hardware‟s processing pipeline.

PowerVR TBDR Graphics Architecture

It is recommended to read the following documents to become familiar with the PowerVR graphics
architecture:

 PowerVR Hardware Architecture Overview for Developers

 PowerVR Instruction Set Reference

These documents are packaged with the PowerVR SDK & Tools, and can also be found online here.

Mobile graphics APIs

Mobile graphics APIs are a subset of their desktop counterparts, with imposed restrictions and
specific features to suit the performance characteristics of mobile devices and the batteries that power
them. Although the latest APIs, such as OpenGL ES 3.2, Vulkan and the Android Extension Pack,
have brought many of the desktop and console features to low power devices, there are still
differences that need to be considered.

Many of the recommendations in this document, as well as those in the PowerVR Performance
Recommendations: The Golden Rules and PowerVR Supported Extensions documents, apply to all
mobile graphics architectures. These documents also detail PowerVR specific behaviour and describe
OpenGL ES extensions exposed by the PowerVR reference driver for advanced hardware features.

Thermal Design Power (embedded devices)

This document mainly has focus on optimisations specifically for the PowerVR graphics core.
However, reducing an application‟s workload on the CPU can be beneficial to the entire System on
Chip (SoC) – which includes the graphics core. This is because the CPU and graphics core share
Thermal Design Power (TDP), meaning a reduction in CPU workload can not only reduce power draw
for the entire SoC, but also reduce thermal output. This will help to prevent thermal throttling which
would reduce the amount of power being sent to the SoC, potentially increasing the performance of
the graphics core.

https://community.imgtec.com/developers/powervr/documentation/

 Public Imagination Technologies

PowerVR 7 Revision PowerVR SDK REL_18.2@5224491a

One of the primary advantages of the Vulkan API if used correctly is that it can reduce CPU workload.
This is in part due to Vulkan drivers being very efficient and lightweight, which reduces overheads
when using the API. This means that Vulkan has the potential to reduce the overall power
consumption and thermal output of the entire SoC.

1.5.2. Analysing an Application’s Performance

The process of optimising graphics applications

Optimising graphics applications seems like a straightforward process. Although the steps in the
diagram below may seem obvious, both beginners and experienced developers have in the past
made simple mistakes that have cost large amounts of development time to resolve. Developers tend
to run their analysis tools, identify a bottleneck, modify their application and consider the work done.
One of the most important stages of optimisation though is to verify the change has actually improved
performance. Without analysing performance after a modification, it‟s easy for new, and possibly
worse, bottlenecks to creep their way into a renderer.

Optimisation Process for Graphics Applications

The right tools for the job

The PowerVR SDK includes profilers, debuggers and a variety of other analysis tools to help
developers track down issues. Here‟s a quick overview of the key utilities:

 PVRMonitor: Renders a real-time overlay of the CPU and graphics stats on Android devices
with PowerVR graphics cores.

 PVRTune: Remote graphics performance analyser, with a server on the target, and a GUI
analysis tool on the development machine. Captures timing data and counters, such as
hardware unit loads and throughput data, in real-time.

 PVRShaderEditor: Off-line shader editor and performance analyser. Generates disassembly
in real-time for SGX and Rogue graphics cores.

 PVRTrace: OpenGL ES 1.x, 2.0 & 3.x capture and analysis tool.

For more information regarding our entire suite of development tools, please visit our PowerVR Tools
landing page here.

https://www.imgtec.com/developers/powervr-sdk-tools/pvrmonitor/
https://www.imgtec.com/developers/powervr-sdk-tools/pvrtune/
https://www.imgtec.com/developers/powervr-sdk-tools/pvrshadereditor/
https://www.imgtec.com/developers/powervr-sdk-tools/pvrtrace/
https://www.imgtec.com/developers/powervr-sdk-tools/

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 8 Performance Recommendations

2. Optimising Geometry

2.1. Geometry Complexity

It is important that an appropriate level of geometry complexity be used for each object or portion of
an object. Here are some examples of wasteful usage:

 using a large number of polygons on an object that will never cover more than a small area of
the screen

 using polygons for detail that will never be seen due to camera angle, or culling

 using large numbers of primitives for objects that may be drawn with fewer primitives. For
example, using hundreds of polygons to render a single quad.

Shader techniques such as bump mapping should be considered to minimise geometry complexity,
but still maintain a high level of perceived detail. Other techniques such as Level of Detail should also
be used. This is especially true for things such as reflection passes where higher amounts of
geometry may not be visible.

2.2. Primitive Type

For optimal performance on PowerVR Graphics Cores, a mesh with static attribute data should:

 use indexed triangle lists

 interleave VBO attribute data

 not include unused attributes

For optimal vertex shader execution performance, meshes transformed by the same vertex shader
(even if compiled into different shader programs) must have the same VBO attribute data layout. The
PVRGeoPod tool can be used to generate vertex data which is optimised for cache coherency.

On some devices, padding each vertex to 16 byte boundaries may also improve performance.

2.3. Data Types

When passing data into a shader, such as uniforms, varyings, or attributes, always consider their
usage. If the data is intended to be used in math operations then always use a floating point data type
to prevent unnecessary type conversions between integer and float. If the data is intended to be used
solely as an integer, for instance, an index to an array, then the data will not require a conversion.

Note: this implicit conversion is performed in the Unified Shader Core (USC) and costs a few
additional cycles, and so should be avoided.

The throughput (ops/cycle) of various data types should also be considered.

From fastest to slowest:

 FP16 – mediump (see section 4.5.2)

 FP32 – highp (see section 4.5.1)

 INT

The conversion will be performed if the application uses an integer attribute type in a floating point
operation, otherwise there is no additional cost associated with integer types.

The choice of attribute data type is a trade-off between shader cycles, bandwidth/storage
requirements and precision. It is important that type conversion is considered as bandwidth is always
at a premium.

There are a couple of exceptions to this rule:

 The data type 10F11F11F will require conversion to be performed by the hardware.

 The data type 8 bit S/UNORM may not require conversion, depending on the hardware being
deployed to.

https://www.imgtec.com/developers/powervr-sdk-tools/pvrgeopod/

 Public Imagination Technologies

PowerVR 9 Revision PowerVR SDK REL_18.2@5224491a

Precision requirements should be checked carefully; the byte and short types are often sufficient,
even for position information. For example, scaled to a range of 10m the short types give a precision
of 150 µm. Scaling and biasing those attribute values to fit a certain range can often be folded into
other vertex shader calculations, such as multiplied into a transformation matrix.

2.4. Interleaving Attributes

Two ways exist to store vertex data in memory. These are either:

 The data is stored with all the information, position, normals and so on pertaining to a given
vertex in a single block. This is followed by all the information pertaining to the next vertex.

 The data can be stored in a series of arrays, each containing all the information of a particular
type for each vertex. For example, an array of positions or an array of normals.

The first of these two options is called interleaving. Usually data should be interleaved, as this
provides better cache efficiency, and thus better performance. However, two major caveats exist to
this rule:

 Interleaving should not be used if several meshes share only some vertex attributes from an
array of vertex attributes. In this case, separating the shared attributes into their own array
may result in better performance, as opposed to duplicating the shared attributes in order to
interleave them with the shared ones.

 Interleaving should also not be used if a single attribute will be updated frequently, outside of
the Graphics Core, while the other attributes remain the same. In this instance data that will
not be updated should be interleaved, while data that will be updated is held in a separate
array.

2.5. Vertex Buffer Objects – OpenGL ES

Vertex Buffer Objects (VBOs) are the preferred way of storing vertex and index data. Since VBO
storage is managed by the driver, there is no need to copy an array from the client side at every draw
call, and the driver is able to perform some transparent optimisations.

Pack all the vertex attributes that are required for a mesh into the same VBO unless a mixture of static
and dynamic attributes are being used. Do not create a VBO for every mesh, as it is a good idea to
group meshes that are always rendered together in order to minimise buffer rebinding. This also has
the benefit of improving batching.

As the graphics chip tends to process multiple frames at a time, the driver has to internally allocate
multiple buffers for dynamic VBOs so that each frame has a unique dynamic buffer associated with it.

Due to this driver behaviour, it is generally better for performance if dynamic vertex data (data that
changes on a per-frame basis) is split from the static vertex data and placed into a separate VBO.
This means only the dynamic VBOs need to be resubmitted per frame, rather than the entire vertex
data set.

If there is a mesh where only some of the vertex data is dynamic, such as a skinned character in a
game, then a VBO should be created that contains the static data. Use calls to

glVertexAttribPointer to resubmit the dynamic vertex data.

On a similar note, a VBO that will never change should always set the STATIC_DRAW flag, while a

VBO whose contents will change should never set it.

An alternative approach to dynamically updating vertex data involves creating a kind of ring buffer,

where all the vertex data is stored in a single buffer, and the API function glMapBufferRange is

used to map portions of the buffer for updating. This allows the application to update vertex data
stored in one region of a vertex buffer while the graphics core is drawing from a separate region of the
same vertex buffer.

Note: data should only be overwritten when it is no longer being used by the graphics core, meaning
fences should be employed to determine when it is safe to update a region of buffer.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 10 Performance Recommendations

2.6. Draw Call Size

When using the OpenGL ES API, draw calls should contain a significant amount of work for the
graphics core to process through the number of vertices, heavy shader arithmetic computation, or
both. This is in order to negate the API overhead incurred by calling the function in the first place.
Many light draw calls with little work for the graphics core to process each time can incur unnecessary
overhead, and potentially lead to a CPU bottleneck.

When an application uses the Vulkan API correctly, this issue is much less critical due to the API
being much more efficient. Command buffer submission results in significantly less driver overhead
compared to OpenGL ES.

2.7. Triangle Size

On PowerVR hardware an application should try to avoid small triangle sizes, in terms of pixel
coverage (area), especially dipping below 32 pixels per primitive. Rendering triangles smaller than this
size will impact the efficiency of rasterization, which could potentially lead to a bottleneck.

In addition, submitting many tiny triangles will likely result in the hardware spending a large
percentage of time processing them in the vertex stage, due to the number of triangles rather than
size. This is specifically with the tile accelerator (TA) fixed function hardware, which could potentially
result in a TA bottleneck. Many small triangles will result in an increased number of accesses to the
parameter buffer, which is located in system memory. This will increase the memory bandwidth
footprint.

Note: sub-pixel triangles (triangles that cover less than a single pixel) will be discarded by the
hardware.

Parameter buffer

The tile accelerator (TA) on PowerVR graphics cores generates a list containing pointers to each
vertex passed in from the application. This structure determines which tile each vertex resides in. This
list is called the parameter buffer (PB) and is stored in system memory.

2.8. Face Culling

An application should enable face culling wherever possible, and correctly set the appropriate face to
be culled. Enabling face culling significantly reduces the amount of load on the graphics hardware.
This is due to the significant reduction in the number of polygons that must be processed by
hardware. The tiling hardware (TA) does not need to bin as many triangles and the ISP does not need
to rasterize as many triangles. This can help performance significantly on highly complex workloads
with many hundreds of thousands or millions of polygons, and reduce the likelihood of bottlenecks in
these fixed function pipeline stages.

2.9. Sorting Geometry

2.9.1. Distance

On PowerVR hardware there is no performance benefit to be gained by sorting opaque geometry
based on distance from the camera. The Hidden Surface Removal (HSR) hardware will detect and
remove occluded (opaque) geometry from the pipeline automatically before fragment processing
begins. Performing this operation would be a waste of resources.

However, for blended geometry, sorting is necessary to get the correct results, and for alpha tested
geometry it may actually be beneficial to sort. If the application uses opaque, alpha tested and alpha
blended objects in a scene, then it is advised that the application renders the opaque objects first,
followed by the alpha tested objects, and finally the transparent geometry.

2.9.2. Render state

There are performance gains to be had by sorting geometry based on render state, for example
common materials, shaders, render targets or resources. Sorting the geometry based on this method
can significantly reduce the amount of resources that are switched (operations which may incur
significant overheads) by the driver during rendering of the frame. This can reduce the amount of work

 Public Imagination Technologies

PowerVR 11 Revision PowerVR SDK REL_18.2@5224491a

that the driver performs, therefore reducing CPU workload. It can also reduce the amount of time the
graphics core spends idle waiting for resources to be ready before being able to render.

Render to Texture

For maximised performance the preferred method for rendering to textures in OpenGL ES is through
the use of Frame Buffer Objects (FBOs) with textures as attachments.

An application should always render to frame buffer objects (FBO) in series, which means submitting
all calls for one FBO before moving to the next. This serves to significantly reduce unnecessary
system memory bandwidth usage, caused by flushing partially completed renders to system memory
when the target FBO is changed, and it will also minimise state changes. For optimal performance,
attachments should be unique to each FBO, and attachments should not be added or removed once
the FBO has been created.

Note: PowerVR hardware exposes a unique extension to efficiently perform down sampling on frame
buffer attachments, see section 6.7 for further information.

2.10. Z Pre-pass

On PowerVR hardware there is no performance benefit to rendering a low-poly geometry Z pre-pass
to save fragment processing later. Performing this operation would be a waste of clock cycles and
memory bandwidth. The PowerVR hidden surface removal (HSR) hardware will detect and remove
occluded (opaque) geometry from the pipeline automatically during rasterization, before fragment
processing begins.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 12 Performance Recommendations

3. Optimising Textures

3.1. Texture size

It is a common misconception that bigger textures always look better. A 1024x1024 texture that never
takes up more than a 32x32 area of the screen is a waste of both storage space and reduces cache
efficiency. A texture‟s size should be based on its usage; there should be a 1 pixel to 1 texel mapping
when the object that it is mapped to is viewed from the closest allowable distance.

Before considering reducing the resolution of texture assets to save storage space, apply texture
compression. If the quality of the lossy texture compression is unacceptable, consider using an 8 or
16 bit per pixel uncompressed format. If the storage space for the assets still needs to be reduced,
then consider reducing the resolution of the images.

3.1.1. Demystifying NPOT

If a 2D texture has dimensions which are a power-of-two (width and height are 2
n
 and 2

m
for some m

and n), then the texture is known as a POT texture (power-of-two). If they are not, it is known as an
NPOT texture (non-power-of-two). This section seeks to clarify the status of NPOT textures in
OpenGL ES.

OpenGL ES Support

NPOT textures are supported as required by the OpenGL ES specifications. However, it is necessary
to point out the following:

 NPOT textures are not supported in OpenGL ES 1.1 implementations.

 NPOT textures are supported in OpenGL ES 2.0 implementations, but only with the wrap

mode of GL_CLAMP_TO_EDGE.

o The default wrap mode in OpenGL ES 2.0 is GL_REPEAT. This must be specifically

overridden in an application to GL_CLAMP_TO_EDGE for NPOT textures to function

correctly.

o If this wrap mode is not correctly set then an invalid texture error will occur. Likewise
a driver error may occur at runtime on newer drivers, to highlight the need to set a
wrap mode.

GL_IMG_texture_npot

An extension exists (GL_IMG_texture_npot) to provide some of the functionality found outside of

the core OpenGL ES specification. This extension allows the use of the following filters for NPOT
textures:

 LINEAR_MIPMAP_NEAREST

 LINEAR_MIPMAP_LINEAR

 NEAREST_MIPMAP_NEAREST

 NEAREST_MIPMAP_LINEAR

It also allows the calling of glGenerateMipmapOES with an NPOT texture to generate NPOT MIP-

maps. Like all other OpenGL ES extensions, the application should check for this extension‟s
presence before attempting to load and use it.

Guidelines

Finally, a few additional points should be considered when using NPOT textures:

 POT textures should be favoured over NPOT textures for the majority of use cases as this
gives the best opportunity for the hardware and driver to work optimally.

 A 512x128 texture will qualify as a POT texture, not an NPOT texture, where rectangular POT
textures are fully supported.

 Public Imagination Technologies

PowerVR 13 Revision PowerVR SDK REL_18.2@5224491a

 2D applications should see little performance loss from the use of NPOT textures other than
possibly at upload time. 2D applications could be a browser or other application rendering UI
elements, where an NPOT texture is displayed with a one-to-one texel to pixel mapping.

 To ensure that texture upload can be optimally performed by the hardware, use textures
where both dimensions are multiples of 32 pixels.

The use of NPOT textures may cause a drop in performance during 3D rendering. This can vary
depending upon MIP-map levels, size of the texture, texture usage, and the target platform.

3.2. Texture Compression

Modern applications have become graphically intensive. Certain types of software, such as games or
navigation aids, often need large amounts of textures in order to represent a scene with satisfying
quality. Texture compression can save or allow better utilisation of bandwidth, power, and memory
without noticeably losing graphical quality and should be used as much as possible. PowerVR
hardware offers a specific form of texture compression called PVRTC which should be used as much
as possible.

PVRTC is PowerVR‟s proprietary texture compression scheme. It uses a sophisticated amplitude
modulation scheme to compress textures. Texture data is encoded as two low-resolution images
along with a full resolution, low bit-precision modulation signal. More information can be found in the
whitepaper:

 Fenney, S. (2003) 'Texture Compression Using Low-Frequency Signal Modulation'
SIGGRAPH Conference.

PVRTC supports both opaque (RGB) and translucent (RGBA) textures, unlike other formats such as
S3TC that require a dedicated, larger form to support full alpha channels. It also boasts a very high
image quality for competitive compression ratios of 4 bits per pixel (PVRTC 4bpp) and 2 bits per pixel
(PVRTC 2bpp).

3.2.1. PVRTexTool

PVRTexTool is a utility for compressing textures, which is an important technique that ensures the
lowest possible texture memory overhead at application run-time. The PVRTexTool package includes
a library, command-line and GUI tools, and a set of plug-ins. Plug-ins are available for Autodesk 3ds
Max, Autodesk Maya, and Adobe Photoshop.

https://www.imgtec.com/developers/powervr-sdk-tools/pvrtextool/

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 14 Performance Recommendations

PVRTexTool GUI

Each component is capable of converting to a variety of popular compressed texture formats such as
PVRTC and ETC, as well as all of the core texture formats for a variety of different APIs. They also
include a number of advanced features to pre-process the image data, for example border generation,
colour bleeding and normal map generation.

Textures can be saved to DDS, KTX or PVR. PVR is Imagination‟s PowerVR Texture Container
format which benefits from:

 full public specification

 support for custom metadata

 complete and optimised resource loading code with other PVR tools

Key features of PVRTexTool include:

 Supports all core texture formats in OpenGL ES, Vulkan and DirectX 11.1

 PVRTC, ASTC, ETC and DXT texture compression

 Outputs to PVR, KTX, or DDS files

 Pre-processing textures for efficient rendering

 Normal map generation

 Composition and visualisation of cube maps

 Optimised font to texture creation

 Creation of texture arrays

For more information and to download the latest version of PVRTexTool, please visit our page here.

Note: Texture arrays are allocated as contiguous blocks of memory. In OpenGL ES (only) modifying
any texel within any element of the array will cause the driver to ghost the entire texture array.
The KHR_debug logging will report when these ghosting events occur. In Vulkan all
synchronisation is under the application’s control.

https://www.imgtec.com/developers/powervr-sdk-tools/pvrtextool/

 Public Imagination Technologies

PowerVR 15 Revision PowerVR SDK REL_18.2@5224491a

3.2.2. Why use PVRTC?

In any given situation, the best texture format to use is the one that gives the required image quality at
the highest rate of compression. The smaller the size of the texture data, the less bandwidth is
required for texture fetches. This reduces power consumption, can increase performance, and allows
for more textures to be used for the same budget.

The smallest RGB and RGBA format currently available on all PowerVR Graphics Cores is PVRTC
2bpp and therefore it should be considered for every texture in an application. Larger formats such as
PVRTC 4bpp should only be used if the image quality provided by a particular PVRTC 2bpp image
does not have sufficient quality. On the latest PowerVR graphics cores, ASTC compression is also
available.

Performance improvement

The smaller memory footprint of PVRTC means less data is transferred from memory to the Graphics
Core allowing for major bandwidth savings. In situations where memory bandwidth is the limiting
factor in an application‟s performance, PVRTC can provide a significant boost. In addition PVRTC
improves cache (on-chip memory) efficiency, because it takes less space to store the data in the
cache. This can reduce the number of cache evictions and improve cache hit-rate.

Power consumption

Memory accesses are one of the primary causes of increased power consumption on mobile devices
where battery life is of the utmost importance. The bandwidth savings and better cache performance
resulting from the use of PVRTC both contribute to decreasing the quantity and magnitude of memory
accesses. These in turn reduce the power consumption of an application.

3.2.3. Image file compression versus texture compression

Developers are familiar with compressed image file formats such as JPG or PNG. It is important to be
aware of the distinction between these forms of storage compression, and the texture compression
discussed in this document.

The primary requirement of storage compression schemes is that files compressed using them should
occupy as small an amount of storage in a file system as possible. There is no requirement that the
data stays compressed while in use. The result is that storage-based image file formats tend to
produce very small file sizes, often for very high (or lossless) image quality, but at the cost of
immediate decompression on use. This immediate decompression, usually to 24/32bpp means that
the image, while small on disk, consumes large amounts of bandwidth and memory at runtime.

Texture compression schemes such as PVRTC are designed to be directly usable by the Graphics
Core. The texture data exists in storage in memory, and when transferred to the graphics hardware
itself, in the compressed format. The only step in which full-precision colour values are extracted from
a compressed state is when dedicated texture sampling hardware inside the graphics accelerator
passes texel values to the shader processing units. A graphical representation of this can be seen
below.

This allows all the advantages mentioned above, but puts some limits on the form the compression
technique may take. In order to allow for direct use by the graphics accelerator a texture format
should be optimised for random access, with a minimal size of data from which to retrieve each texel‟s
values. Consequently, texture compression schemes are usually fixed bitrate with very high data
locality. Image file formats are not constrained by these requirements, and can often achieve higher
compression ratios and image quality for a given data size.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 16 Performance Recommendations

Image is decompressed

Compressed Image

Decompressed

Image 24/32 bpp

System Memory

File System

Texel Value

Graphics Core

Decompressed

Image 24/32 bpp

Compressed Texture 2/4 bpp

Compressed

Texture 2/4 bpp

Compressed

Texture 2/4 bpp

Colour values read directly

Image file compression vs. texture compression

 Public Imagination Technologies

PowerVR 17 Revision PowerVR SDK REL_18.2@5224491a

3.3. Mipmapping

Mipmaps are smaller, pre-filtered variants of a texture image, representing different Levels Of Detail
(LOD) of a texture. By using a minification filter mode that uses mipmaps, the Graphics Core can be
set up to automatically calculate which LOD comes closest to mapping the texels of a mipmap to
pixels in the render target, and use the right mipmap for texturing.

3.3.1. Advantages

Using mipmaps has two important advantages:

 increases performance by massively improving texture cache efficiency, especially in cases of
strong minification

 improves image quality by countering the aliasing that is caused by the under-sampling of
textures that do not use mipmapping.

The single limitation of mipmapping is that it requires approximately a third more texture memory per
image. Depending on the situation, this cost may be minor when compared to the benefits in terms of
rendering speed and image quality.

There are some exceptions where mipmaps should not be used. Specifically, mipmapping should not
be used where filtering cannot be applied sensibly, such as for textures that contain non-image data
such as indices or depth textures. It should also be avoided for textures that are never minified, for
example, UI elements where texels are always mapped one-to-one to pixels.

3.3.2. Generation

Ideally mipmaps should be created offline using a tool like PVRTexTool, which is available as part of
the PowerVR Graphics SDK. It is possible to generate mipmaps at runtime, which can be useful for
updating the mipmaps for a render to texture target. In OpenGL ES this can be achieved using the

function glGenerateMipmap. In Vulkan there is no such built in function, and they must be

generated manually.

This will not work with PVRTC textures which must have their mipmaps generated offline. A decision
must be made as to which cost is the most appropriate, the storage cost of offline generation, or the
runtime cost (and increased code complexity in the case of Vulkan) of generating mipmaps at runtime.

3.3.3. Filtering

Finally, it should be noted that the lack of filtering between mipmap levels can lead to visible seams at
mipmap transitions, a form of artefact called mipmap banding. Tri-linear filtering in OpenGL ES can be

achieved by using the filter mode GL_LINEAR_MIPMAP_LINEAR. In Vulkan the filtering mode should

be set to VK_SAMPLER_MIPMAP_MODE_LINEAR for tri-linear filtering. This can effectively eliminate

these seams, for a price (see Section 3.4.1), which achieves an even higher image quality.

https://www.imgtec.com/developers/powervr-sdk-tools/pvrtextool/

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 18 Performance Recommendations

3.4. Texture Sampling

3.4.1. Texture filtering

Texture filtering can be used to increase the image quality of textures used in 3D scenes. However,
as the complexity of the filtering used increases, so will the associated cost as more samples are
required.

The common techniques employed for texture filtering are:

 nearest

 bilinear

 cubic

 tri-linear

 anisotropic

Each technique above gives an increased image quality over the previous, at an increasing cost.

Performance can be gained by using an appropriate level of filtering, following the principle of “good
enough” (see “PowerVR Performance Recommendations: The Golden Rules”) For instance, not using
anisotropic if tri-linear is acceptable, or not using tri-linear if bilinear is acceptable.

Filtering works by either taking a single sample in the case of nearest filtering, or by taking multiple
samples, involving multiple texture fetch operations. These are then combined (interpolated) in order
to produce as good a sampling value as possible to use in fragment calculations.

Retrieving multiple values requires more data to be fetched, possibly from disparate areas of memory
and so cache performance and bandwidth use can be affected. For instance, when tri-linear filtering is
used eight texel fetches are required, compared to only four for bilinear filtering or one for nearest
filtering. This means the texture processing unit in the Graphics Core must spend more time and
bandwidth fetching and filtering the required data as the complexity of the filtering increases.

The graphics core will attempt to hide memory access by scheduling USC tasks. If there is not
enough work to hide the memory latency, then the texture fetches may cause the processing of a
fragment to stall while the data is fetched from system memory. If the data is already in cache, then
memory latency is much less an issue. More complex filtering techniques will result in additional data
being transferred across the system memory bus in order to render a frame.

Note: when performing independent texture reads, texture sampling can begin before the execution of
a shader. Therefore the latency of the texture fetch can be avoided, as the data is ready before
shader execution.

On PowerVR hardware bilinear filtering is always hardware accelerated, including shadow sampling -

sampling a texture with depth comparison activated - sampler2DShadow. In the case of shadow

sampling the depth comparison operation is performed in software with USC instructions appended
(patched) to the fragment shader. The exact cost of the depth comparison operation will vary
depending on the exact hardware the application is deployed to. A developer may determine the cost
of the operation by using PVRShaderEditor (as detailed later) and setting the appropriate GLSL
compiler.

3.4.2. Texel Fetch

In certain cases performing a texelFetch operation can be considerably faster than calling the

texture function. For example, take the case of an application performing an expensive sampling

operation such as anisotropic filtering. It will likely be faster to perform a texelFetch operation

over a texture operation, although this should be verified through profiling.

On PowerVR hardware both operations are driven by dedicated hardware known as the Texture

Processing Unit (TPU). In some special cases texelFetch may translate to a DMA operation.

3.4.3. Dependent texture read

A dependent texture read is a texture read in which the texture coordinates depend on some
calculation within the shader instead of on a varying. As the values of this calculation cannot be

https://www.imgtec.com/developers/powervr-sdk-tools/pvrshadereditor/

 Public Imagination Technologies

PowerVR 19 Revision PowerVR SDK REL_18.2@5224491a

known ahead of time, it is not possible to pre-fetch texture data and so stalls in shader processing
occur.

Vertex shader texture lookups always count as dependent texture reads, as do texture reads in

fragment shaders where the texture read is based on the .zw channels of a varying. On some driver

and platform revisions Texture2DProj() also qualifies as a dependent texture read if given a Vec3

or a Vec4 with an invalid w.

The cost associated with a dependent texture read can be amortised to some extent by hardware
thread scheduling, particularly if the shader in question involves a lot of mathematical calculations.
This process involves the thread scheduler suspending the current thread and swapping in another
thread to process on the USC. This swapped thread will process as much as possible, with the
original thread being swapped back once the texture fetch is complete.

Note: While the hardware will do its best to hide memory latency, dependent texture reads should be
avoided wherever possible for good performance.

Further information on the functioning of the Coarse Grain Scheduler and thread scheduling within
PowerVR hardware can be found in the “PowerVR Hardware Architecture Guide for Developers”.

Dependent texture reads are significantly more efficient on PowerVR Rogue Graphics Cores than
SGX. However, there are still small performance gains to be had. For this reason, applications should
always calculate coordinates before fragment shader execution, unless the algorithm relies on this
functionality.

3.4.4. Wide floating point textures

For textures that exceed 32 bits per texel, each additional 32 bits is counted as a separate texture
read. This also applies to half float texture with three or four components, as well as float textures with
two or more components. These larger formats should be avoided unless necessary for a particular
effect.

3.5. Texture Uploading

When a non-compressed texture is uploaded to the graphics hardware, the input data is in linear
scan-line format; a compressed texture is uploaded block-by-block. Internally, PowerVR hardware
uses its own layout to improve memory access locality and improve cache efficiency. Reformatting of
the data is done on chip by dedicated hardware and is therefore very fast. However, it is still
recommended that a few steps be taken to minimise the cost of this reformat:

 Textures should be uploaded during non-performance critical periods, such as initialisation.
This helps avoid the frame rate dips associated with additional texture loading.

 Avoid uploading texture data mid-frame to a texture object that has already been used for that
frame.

 Consider performing a warm-up step after texture uploads have been performed. Once again,
this helps avoid the frame rate dips associated with texture loading.

3.5.1. Texture warm-up

The warm-up step mentioned before ensures that textures are fully uploaded immediately. By default,

glTexImage2D does not perform all the processing required to upload immediately. Instead, the

texture is fully uploaded the first time it is used. It is possible to force an upload by drawing a series of
triangles off screen or otherwise obscured with the texture object in question bound and so marked for
use. Performing this for all textures in a scene will avoid the cost and potential stutters when they are
uploaded on first use.

3.5.2. Texture formats and precision

Textures should be read as lowp (see Section 4.5.7). The exceptions to this are half float textures

which should be read as mediump, and float and depth textures which should be read as highp.

3.6. Mathematical Look-ups

Sometimes it can be a good idea to encode the results of a complex function into a texture and use it
as a look-up table instead of performing the calculations in a shader. However, this will only provide a

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 20 Performance Recommendations

boost in performance if a bottleneck has been identified in the processing of the shader in question,
and bandwidth is free to perform the texture lookup. If the function parameters, and therefore the
texture coordinates in the look-up table, vary wildly between adjacent fragments, then cache
efficiency will suffer. As a significant amount of work must be saved for this to be an optimisation,
profiling should be performed to determine if the results of using look-up tables are acceptable.

 Public Imagination Technologies

PowerVR 21 Revision PowerVR SDK REL_18.2@5224491a

4. Optimising Shaders

4.1. PVRShaderEditor

To demystify shader optimisation, a GUI utility called PVRShaderEditor is provided, to share a wealth
of off-line performance analysis data for developers as shaders are being written.

PVRShaderEditor GUI

Shader disassembly for PowerVR Rogue graphics cores is provided within the tool. Developers can
see the exact unified shader core (USC) instructions that have been generated by the compiler for the
shader in question.

Key features of the tool include:

 Syntax highlighting for GLSL ES, GLSL, PFX, HLSL and OpenCL Kernels

 Supports PowerVR SGX and Rogue offline GLSL ES compilers

 Per-line cycle count estimates

 Simulated performance estimates (PowerVR Series5 and Series5XT graphics cores only)

 Full dissembled USC code, including FP16 disassembly

 Supports Khronos reference GLSL compiler (optionally compiled to SPIR-V)

https://www.imgtec.com/developers/powervr-sdk-tools/pvrshadereditor/

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 22 Performance Recommendations

To find out more and to download the latest version of PVRShaderEditor, please visit our page here.

4.1.1. GLSL optimiser

GLSL optimiser is a stand-alone C++ library, based on the Mesa GLSL compiler that is used in the
many game engines to optimise GLSL shaders for mobile platforms. The tool can be found on Github
here.

GLSL optimiser can automatically perform some graphics core independent GLSL shader
optimisations. However, keep in mind that the tool will not perform any hardware specific
optimisations, but rather generic optimisations which will likely (but not always) improve performance
on most platforms. In order to verify any shader optimisations performed by the tool, use
PVRShaderEditor.

4.2. Choose the Right Algorithm

For complex shaders that run for more than a few cycles, picking the right algorithm is usually more
important than low-level optimisations. It is highly recommended that a fast, well designed algorithm
be favoured over small performance tweaks to a poor algorithm. Although increasingly powerful,
mobile graphics hardware is not designed to handle some of the latest techniques in desktop and
console shaders. As such, a reduction in complexity will likely be needed from some of these
techniques for mobile shader implementations.

4.3. Know Your Spaces

A common mistake in vertex shaders is to perform unnecessary transformations between model
space, world space, view space and clip space. If the model-world transformation is a rigid body
transformation, as in it only consists of rotations, translations, mirroring, lighting, and similar,
calculations can be performed directly in model space. Transforming uniforms such as light positions
and directions to model space is a per-mesh operation. This is as opposed to transforming the vertex
position to world or view space once per vertex, which is an optimisation. In cases where a particular
space must be used, for example, for cube map reflections, it is often best to use this single space
throughout.

4.4. Flow Control

PowerVR hardware offers full support for flow control in both vertex and fragment shaders without the
need to explicitly enable an extension.

 Static flow control refers to when conditional execution depends on the value of a uniform
variable. The same shader execution path is applied to all vertex or fragment instances in a
draw call.

 Dynamic flow control refers to conditional execution based on per-fragment or per-vertex
data, such as textures or vertex attributes.

Static flow control can be used to combine many shaders into one big uber-shader. Thorough profiling
should be done when taking this approach, as a performance advantage may not be gained. A better
solution when an uber-shader is desired is to use pre-processor defines to create separate shaders
from one larger shader at build time. This effectively creates many smaller shaders from a single
original source file.

Using dynamic branching in a shader has a non-constant overhead that depends on the exact shader
code. Dynamic branching is therefore unpredictable in its effect on performance.

The following specific points should be considered:

 Make use of conditionals to skip unnecessary operations when the condition is met in a
significant number of cases.

 Do not branch to discard (see “PowerVR Performance Recommendations: The Golden

Rules”).

 Series5 and Series5XT only: Avoid branching to a texture read as samplers in dynamic
branches qualify as dependent texture reads, and will harm performance.

https://www.imgtec.com/developers/powervr-sdk-tools/pvrshadereditor/
https://github.com/aras-p/glsl-optimizer
https://www.imgtec.com/developers/powervr-sdk-tools/pvrshadereditor/

 Public Imagination Technologies

PowerVR 23 Revision PowerVR SDK REL_18.2@5224491a

4.4.1. Discard

Applications should avoid the use of the discard operation in the fragment shader, as doing so will

not improve performance. This is because some of the benefits of our TBDR architecture will be lost
when discard is used, so if possible prefer alpha blending over discard.

Note: This is a general problem across many tile based platforms and applies to many
mobile/embedded graphics cores, not just PowerVR devices.

4.4.2. Shader group vote – OpenGL ES

OpenGL ES 3.0 provides a new extension GL_EXT_shader_group_vote. This extension is

designed to allow divergent code, such as branching, in shader programs to be optimised. Consider
how the graphics core (a SIMD processor) executes shaders which are commonly grouped together,
into a set of shader invocations that all must take the same code path. In compute this is known as a
local work group.

In the code snippet below, if even a single shader in the local work group diverges from all other

active shaders in the local work group with a true condition, then all other threads in local work

group must also execute the do_fast_path() code path. This will usually leave most threads in the

local work group dormant. Once the function do_fast_path() returns, all active shaders in the

local work group must then also execute the do_general_path() code path, meaning the local

work group executes both code paths.

if (condition)

 result = do_fast_path();

else

result = do_general_path();

With the same example but using the allInvocationsEXT function (see below), the

allInvocationsEXT function will return the same value for all invocations of the shader in the local

work group. This means the group will either execute the do_fast_path() or the

do_general_path() but not both paths. It achieves this by computing the Boolean value across

the local work group. The implementation uses this result to decide which path to take for all active
threads in the local work group.

if (allInvocationEXT(condition))

 result = do_fast_path();

else

result = do_general_path();

The GL_EXT_shader_group_vote extension exposes three new built-in shader functions:

 bool anyInvocationEXT(bool value) - returns true if value is true for at least one

active invocation in the local work group.

 bool allInvocationsEXT(bool value) - returns true if value is true for all active

invocations in the local work group.

 bool allInvocationsEqualEXT(bool value) - returns true if value is the same for all

active invocations in the group.

Further details on this extension can be found on the Khronos extensions page here.

4.5. Demystifying Precision

PowerVR hardware is designed with support for the multiple precision features of graphics APIs such
as OpenGL ES and Vulkan. Three precision modifiers are included in the API spec for OpenGL ES

2.0 onwards and Vulkan, namely mediump, highp, and lowp. Lower precision calculations can be

performed faster, but need to be used carefully to avoid trouble with visible artefacts being introduced.

The best method of arriving at the right precision for a given value is to begin with lowp or mediump

http://khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_group_vote.txt

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 24 Performance Recommendations

for everything (except samplers) then increase the precision of specific variables until the visual
output is as desired.

4.5.1. Highp

Float variables with the highp precision modifier will be represented as 32 bit floating point (FP32)

values, whereas integer values range from 2
31

-1 to -2
31

. This precision should be used for all position
calculations, including world, view, and projection matrices, as well as any bone matrices used for

skinning where the precision, or range, of mediump is not sufficient. It should also be used for any

scalar calculations that use complex built-in functions such as sin, cos, pow, and log.

4.5.2. Mediump

Variables declared with the mediump modifier are represented as 16 bit floating point (FP16) values

covering the range [-65504.0, 65504.0]. The integer values cover the range [2
15

-1, -2
15

].

It is advised that an application uses FP16 wherever appropriate as it typically offers a performance
improvement over FP32, and should be considered wherever FP32 would normally be used. This is
as long as the precision is sufficient and the maximum and minimum values will not overflow, as
visual artefacts may be introduced.

Using medium precision (FP16) in shaders can result in a significant improvement in performance
over high precision (FP32). This is due to the dedicated FP16 Sum of Products (SOP) arithmetic
pipeline, which can perform two SOP operations in parallel per cycle, theoretically doubling the
throughput of floating point operations. The FP16 SOP pipeline is available on most PowerVR Rogue
graphics cores – depending on the exact variant. Some Rogue cores, such as Series6 XT, also
provide a FP16 MAD (multiply, add) arithmetic pipeline. This can perform two MAD operations in
parallel per cycle, again significantly improving performance compared to high precision.

Verify the improvements of using medium precision by opening the shader in PVRShaderEditor and
selecting the appropriate compiler for the target device.

4.5.3. Lowp

SGX

A variable declared with the lowp modifier will use a 10 bit fixed point format on SGX allowing values

in the range [-2, 2] to be represented to a precision of 1/256. The integer values are in the range of [2
9

-1, -2
9
]. This precision is useful for representing colours and any data read from low precision

textures, such as normals from a normal map. Care must be taken not to overflow the maximum or

minimum value of lowp precision, especially with intermediate results.

Rogue

On PowerVR Rogue devices lowp is represented as a 16 bit floating point value, meaning lowp and

mediump have identical representations as far as the hardware is concerned.

4.5.4. Swizzling

Swizzling is the act of accessing or reordering the components of a vector out of order. Some
examples of swizzling can be found next:

a = var.brg; // Swizzled – Out of order access

b = vec3(var.g, var.b, var.r); // Swizzled – Out of order access

c = vec3(vec4); // Not swizzled – Dropping a component does not change

 // access order

d.gr = a.gr + b.gr // Not swizzled – This will be optimized to a

 // non-swizzled form

Swizzling costs performance on Series5 (lowp only) and Series5XT (all precisions) due to the

additional work required to reorder vector components. As PowerVR Rogue is scalar based, swizzling
is a significantly cheaper operation.

https://www.imgtec.com/developers/powervr-sdk-tools/pvrshadereditor/

 Public Imagination Technologies

PowerVR 25 Revision PowerVR SDK REL_18.2@5224491a

4.5.5. Attributes

The per-vertex attributes passed to a vertex shader should use a precision appropriate to the data-

type being passed in. For example, highp would not be required for a float whose maximum value

never goes above 2 and for which a precision of 1/256 would be acceptable.

4.5.6. Varyings

Varyings represent the outputs from the vertex shader which are interpolated across a triangle and
then fed into the fragment shader. Varyings are significantly cheaper than performing per-fragment
operations to calculate data that could have been passed in from a vertex shader via a varying.

Keep the following considerations in mind when using varyings:

 Each varying requires additional space in the parameter buffer, and additional processing
time to perform interpolation.

 Varying outputs are stored in on-chip memory. Having too many may introduce register
pressure and potentially reduce shader occupancy. This will reduce the maximum number of
concurrent shader executions per Unified Shader Core (USC).

Packing varyings

Packing multiple varyings together, for example packing two Vec2 into a single Vec4, should suffer

no performance penalty and will save varyings. Exclusively on PowerVR Series5 and Series5XT, co-

ordinate varyings which are packed into the .zw channel of a Vec4 will always be treated as a

dependent texture read and should be avoided (see Section 3.4.3).

4.5.7. Samplers

Samplers are used to sample from a texture bound to a certain texture unit. The default precision for

sampler variables is lowp, and usually this is good enough.

Two main exceptions exist to the lowp rule:

 if the sampler will be used to read from either a depth or float texture then it should be

declared with highp

 if the sampler will be used to read from a half float texture then it should be declared as
mediump

4.5.8. Uniforms

Uniform variables represent values that are constant for all vertices or fragments processed as part of
a draw call. They should be used to pass data that can be computed once on the CPU, and then not
changed for the duration of a draw call. Unlike attributes and varyings, uniform variables may be
declared as arrays.

Using uniforms is significantly cheaper than using varyings; however keep the following
considerations in mind when using uniforms:

 A certain number of uniforms (uniform storage varies between graphics cores) can be stored
in registers on-chip. Large uniform arrays will be stored in system memory and accessing
them comes at a bandwidth and execution time cost.

 Redundant uniform updates in between draw calls should be avoided.

Constant calculations

The PowerVR shader compiler can extract calculations based on constant values (for example
uniforms) from the shader and perform these calculations once per draw call.

4.5.9. Conversion costs

When performing arithmetic operations on multiple precisions within the same calculation, it is likely
that values will have to be packed or unpacked. Packing is the act of taking a higher precision value
and placing into a lower precision variable while unpacking is the reverse and involves taking a lower
precision value and placing it into a higher precision variable.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 26 Performance Recommendations

Where possible, precisions should be kept the same for an entire calculation as each pack and
unpack has a cost associated with it. This cost can be further reduced by writing shaders in such a
way that:

 all higher precision calculations are performed together, at the top of the shader

 all lower precision calculations are performed at the bottom

This ensures that variables are not repeatedly packed and unpacked. It also ensures that variables

are not all unpacked into highp thereby losing any benefit of using lower precision.

Using fixed point values in an arithmetic operation will result in the graphics core performing a type
conversion. This should be avoided as additional cycles will be introduced to the shader.

4.6. Scalar Operations

It is very easy to accidently vectorise a calculation. Be wary of vectorising scalar operations where it
cost more cycles for the same output. For example:

highp vec4 v1, v2;

highp float x, y;

// Bad

v2 = (v1 * x) * y; // vector * scalar followed by vector * scalar totals 8 scalar muladds

// Good

v2 = v1 * (x * y); // scalar * scalar followed by vector * scalar totals 5 scalar muladds

4.7. Constant Data in Shaders

If used correctly, the const keyword can provide a significant performance boost. For example, a

shader that declares a const array outside of the main() block can perform significantly better

than the same shader with the array not marked as const, even if the array could be treated as such.

Another example would be the use of a const value to reference an array member. In this example, if

the value is const, the Graphics Core can know ahead of time that the number will not change and

data can be pre-fetched prior to the shader being run.

4.8. Geometry / Tessellation Shaders

Tessellation and geometry shaders should be avoided if possible, as the hardware will be required to
bin (place into tiles) many more vertices which are produced by these pipeline stages. This results in
many more writes to the parameter buffer which is located off-chip in system memory.

Geometry and tessellation will usually result in increased pressure on the rasterization hardware, due
to the increased number of triangles. The exact impact on performance will depend on the exact
graphics core that the application is being deployed to.

Profiling with PVRTune would reveal the impact of using geometry and/or tessellation shaders.

If an application must use tessellation and/or geometry shaders on PowerVR hardware, it should be
noted that the shaders may be hardware accelerated, may be emulated or may not be supported at
all, depending on the exact graphics core that the application is being deployed to.

 Series 6XE graphics cores do not support either the tessellation or geometry shader extension,
and therefore these stages in the graphics pipeline are not available on this platform.

 Series 6, Series 6XT, Series 7XE and Series 8XE graphics cores have native support (hardware
acceleration) for geometry shaders, and provide execution of tessellation shaders through
software emulation.

 Series 7XT and Series 8XT graphics cores provide native support (hardware acceleration) for
both geometry and tessellation shaders.

While geometry shaders are not optimal when used to introduce new geometry, they can be used to
cull geometry, which may result in some moderate performance gains. This should be verified through
profiling using our PVRTune tool which is available in our SDK.

https://www.imgtec.com/developers/powervr-sdk-tools/pvrtune/
https://www.imgtec.com/developers/powervr-sdk-tools/pvrtune/

 Public Imagination Technologies

PowerVR 27 Revision PowerVR SDK REL_18.2@5224491a

5. Optimising Specific Techniques

5.1. Using Multiple Render Targets Efficiently

Multiple Render Targets (MRTs) are available in a variety of APIs and are supported on PowerVR
Rogue hardware. MRTs allow a developer to render images to multiple render target textures at once.
These textures can then be used as inputs to other shaders, applied to a 3D model, presented to the
screen and so on. A common use case for MRTs is deferred shading, whereby the lighting
calculations are stored in multiple render targets, and then used to light the scene after it has been
drawn.

Tile based architectures such as PowerVR hardware can efficiently use render targets by storing per-
pixel render target data for a single tile (32 x 32 pixels) entirely in on-chip memory, also known as
Pixel Local Storage (PLS). This has the advantage of significantly reducing system memory access
compared to immediate mode renderers.

On most PowerVR devices the recommended maximum size per pixel for a render target is 128 bits
plus a depth attachment. On some graphics cores the amount of available memory for PLS may be
increased to 256 bits plus a depth attachment.

It is highly recommended that applications do not exceed the amount of available per pixel storage as
this will result in the render target data being spilled out into system memory. This is extremely
expensive as the render target data will need to be read for each fragment from system memory when
a shader accesses the data stored in the render target. This essentially negates one of the main
benefits of tile based rendering, and costs huge amounts of memory bandwidth and performance.

Exceeding the per pixel storage will also likely result in reduced Unified Shader Cluster (USC)
occupancy. Therefore, the maximum number of active threads (shaders) executing in parallel per
USC will be severely limited, resulting in reduced efficiency and performance.

On PowerVR hardware, applications can use a variety of render target formats. If the per pixel render
target data can fit into on-chip memory, then all texture accesses are handled by the on-chip memory
bus, and therefore all formats equally provide the same performance. This is because no transactions
from system memory to the chip are required to load and store the data.

In addition to memory transaction and performance considerations, when render targets spill in
system memory not all render target formats will be supported at full rate over the system memory
bus. Therefore, transfer rates may be further reduced depending on the format and the Texture
Processing Unit (TPU) available in the graphics core.

The transfer rates are as follows:

 RGBA8 can be accessed at full rate.

 RGB10A2 can be accessed at almost full rate.

 RG11B10 can be accessed at half rate

 RGBA16F can be accessed at half rate

 RGBA32F can be accessed at quarter rate (no bilinear filtering)

5.1.1. Recommended HDR texture formats

There are several texture formats available, which can be used to store HDR texture data. Each
format has its benefits and drawbacks. This section aims to discuss several HDR suitable texture
formats that are currently available for use by developers.

The appropriate HDR texture format will depend on several factors such as available memory
bandwidth, precision (quality), alpha support and so on.

The following table details various attributes of HDR suitable texture formats:

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 28 Performance Recommendations

HDR Suitable Texture Formats

Texture
Format

Bandwidth
Cost

USC Cost Filtering Precision Alpha

RGB10A2 Same as
RGBA8

None Hardware
accelerated,
slightly slower
than RGBA8.

RGB channels
have greater
precision over
RGBA8 at the
cost of alpha
precision.

Supports
alpha (only
4 unique
values)

RGBA16F 2x RGBA8 None Hardware
accelerated but
performs at half
the rate of
RGBA8.

Far greater
precision than
RGBA8 (2

16

values per
channel).

Supports
alpha.

RG11B10F 2x RGBA8

(internally
stored as
RGBA16F)

None Hardware
accelerated but
performs at half
the rate of
RGBA8.

Same as
RGBA16F.

Does not
have an
alpha
channel.

RGBA32F 4x RGBA8 None Hardware
accelerated but
performs at
quarter the rate
of RGBA8 and
only supports
nearest
sampling.

Vastly greater
precision than any
other format (2

32

values per
channel).

Supports
alpha.

RGBM
(RGBA8)

Same as
RGBA8

Moderate USC
cost for
encoding /
decoding the
data.

Hardware does
not natively
support filtering
on this format.

Encoding
algorithm
improves the
range of values
that can be
represented by
the RGB channels
compared to
standard RGBA8.

No alpha –
sacrificed
to provide
improved
RGB
range.

RGBdiv8

(RGBA8)

Same as
RGBA8

Slightly more
complex than
RGBM to
encode /
decode the
data.

Hardware does
not natively
support filtering
on this format.

Encoding
algorithm
improves the
range of values
that can be
represented by
the RGB channels
compared to
standard RGBA8.

No alpha –
sacrificed
to provide
improved
RGB
range.

For HDR texture formats which are natively supported by the hardware, it is recommended to use
either RGB10A2, or RGBA16F which has increased bandwidth. These textures provide a good
balance between quality, performance (filtering) and memory bandwidth usage.

RGBM & RGBdiv8

Both RGBM and RGBdiv8 texture formats require the developer to implement encoding and decoding
functionality into the shader as these formats are not natively supported by the hardware. This costs
additional USC cycles, so if an application is USC limited it should not employ these formats.

 Public Imagination Technologies

PowerVR 29 Revision PowerVR SDK REL_18.2@5224491a

These formats do have the advantage that they cost very little in terms of memory bandwidth as they
cost the same bandwidth as RGBA8. Therefore, if an application is bound by memory bandwidth, it
may be useful to explore these formats. Further information on the RGBM format can be found here,
more information on RGBdiv8 can be found here.

5.2. Preferred Lighting Solution

There are several lighting techniques which an application may use, each with their own costs and
benefits. Choosing the most optimal algorithm for the task may improve performance significantly.
Here is a list of the common lighting techniques and their usage scenarios:

 Forward shading is the recommended method to be used for a small number of light sources.
Small is fewer than ten point lights, anything more and deferred will be faster.

 Traditional deferred shading is the recommended method to be used for many light sources. This
technique is highly efficient on PowerVR hardware, because the per pixel data for the tile stored
in the G-Buffer render targets can be stored in on-chip memory (Pixel Local Storage). As a result,
the fragment shaders can reuse the data already stored in on-chip memory, significantly reducing
accesses to system memory and significantly improving performance.

 For all compute based techniques such as tiled deferred and forward+, it is worth keeping in mind
that the contents of the G-buffer will need to be written out to system memory. This is costly for
almost all mobile and embedded platforms including PowerVR graphics cores, due to the limited
amount of system memory bandwidth available.

5.3. Preferred Shadowing Solution

There are many techniques for creating shadows. One technique that performs exceptionally well on
PowerVR hardware is stencil shadowing, because the hardware is very good at handling stencil
buffers. The data is stored in on-chip memory and never has to be written out to system memory, so if
hard shadows are acceptable then it is recommended to employ a stencil shadowing algorithm.

Techniques that require results to be written to off-chip memory, such as shadow mapping, will
usually perform worse than techniques that can be computed entirely in on-chip memory.

5.4. MSAA Performance

On PowerVR hardware, Multi-Sampled Anti-Aliasing (MSAA) can be performed directly in on-chip
memory before being written out to system memory, which saves valuable memory bandwidth. MSAA
is considered to cost relatively little performance. This is true for typical games and UIs, which have
low geometry counts but very complex shaders. The complex shaders typically hide the cost of MSAA
and have a reduced blend workload.

2x MSAA is virtually free on most PowerVR graphics cores (Rogue onwards), while 4x MSAA+ will
noticeably impact performance. This is partly due to the increased on-chip memory footprint, which
results in a reduction in tile dimensions (for instance 32 x 32 -> 32 x 16 -> 16 x 16 pixels) as the
number of samples taken increases. This in turn results in an increased number of tiles that need to
be processed by the tile accelerator hardware, which then increases the vertex stages overall
processing cost.

The concept of good enough should be followed in determining how much anti-aliasing is enough. An
application may only require 2x MSAA to look good enough, while performing comfortably at a
consistent 60 FPS. In some cases, there may be no need for anti-aliasing to be used at all, for
example when the target device‟s display has high pixels per-inch (PPI).

Performing MSAA becomes costlier when there is an alpha blended edge, resulting in the graphics
core marking the pixels on the edge to on edge blend. On edge blend is a costly operation, as the
blending is performed for each sample by a shader in software. In contrast, on opaque edge is
performed by dedicated hardware, and is a much cheaper operation as a result. On edge blend is
also sticky, which means that once an on-screen pixel is marked, all subsequent blended pixels are
blended by a shader, rather than by dedicated hardware.

To mitigate these costs, submit all opaque geometry first, which keeps the pixels off edge for as long
as possible. Be extremely reserved with the use of blending, as blending has lots of performance
implications, not just for MSAA.

http://graphicrants.blogspot.co.uk/2009/04/rgbm-color-encoding.html
http://vemberaudio.se/graphics/RGBdiv8.pdf

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 30 Performance Recommendations

5.5. Preferred Analytical AA Solution

Analytical anti-aliasing algorithms such as fast approximate anti-aliasing (FXAA) or sub-pixel
morphological anti-aliasing (SMAA) are shader-based techniques. These types of anti-aliasing
techniques use analytics to detect and blur sharp geometric features. They are post-processing
algorithms which are performed in screen space, and usually have a fixed cost, such as a full-screen
pass. They do require more memory bandwidth, which is usually at a premium on mobile and
embedded devices.

On PowerVR hardware the recommended analytical anti-aliasing solutions are as follows (best to
worst performance):

 Fast approXimate Anti-Aliasing (FXAA) – single full screen pass

 Conservative Morphological Anti-Aliasing (CMAA)

 Morphological Anti-Aliasing (MLAA)

 Sub-pixel Morphological Anti-Aliasing (SMAA).

5.6. Screen Space Ambient Occlusion

Screen Space Ambient Occlusion (SSAO) is a technique used for efficiently approximating how each
point in the scene is affected by ambient light. SSAO is implemented in a fragment shader, which
executes once per fragment - a single full screen pass. In its simplest form the algorithm samples the
depth buffer (stored in a texture) around the current pixel and attempts to estimate the occlusion for
the current fragment. However, this approach results in hundreds of random access to the depth
texture stored in system memory, which will inevitably thrash the cache and result in poor
performance.

If an application implements SSAO, it is recommended that the algorithm implements a form of
hierarchical Z buffer (Hi-Z, HZB) optimisation. Briefly, this involves performing a hierarchical Z pre-
pass to build a MIP chain for the hardware calculated depth buffer. Building the depth MIP-chain
involves progressively taking either the minimum or maximum depth value for a tile of pixels (for
example, 4 x 4) and storing the value in the next MIP level.

Hierarchical Z buffer optimisation significantly improves the rate of convergence for ray intersection by
reducing the number of steps to find an intersection, and significantly improves cache efficiency. This
is because a small region defining the working area at each level of the MIP chain will likely reside in
cache, which significantly reduces accesses to system memory. Overall this results in improved
performance and massively reduced system memory bandwidth. A white paper explaining one such
approach can be found here.

5.7. Ray-Marching

If an application implements a ray-marching graphical effect such as Screen Space Reflections
(SSR), the algorithm should implement an optimal sampling technique which takes as few samples as
possible to achieve the desired quality. One possible approach to reducing the number of samples is
to perform the ray marching in a half-screen resolution buffer – in other words, down sampled.
PowerVR hardware exposes an extension in OpenGL ES for hardware accelerated down sampling,
see section 6.7. This approach could also be coupled with a hierarchical Z buffer (similar to the
technique discussed in section 5.6) to accelerate the ray marching further.

In place of the relatively expensive ray marching algorithms, it may be worth considering using a
parallax corrected local cube map method. This could be used as either a fall-back technique, or even
as the main technique as it may be good enough visually for the application and is considerably
cheaper to perform. The application could also use simple, cheap, planar reflections for flat surfaces.

An article discussing an optimal SSR technique can be found here and an article discussing a local
cube map can be found here.

5.8. Separable Kernels

Many post-processing techniques such as full screen blur with a Gaussian blur, or gather and scatter
operations like motion blur, depth of field and bloom can be implemented with multiple separated
kernels. The downside to using a multi-pass algorithm is that they can be very inefficient in terms of
memory bandwidth. This is due to increased round trips to system memory; write-out, read-back,

http://blog.simonrodriguez.fr/articles/30-07-2016_implementing_fxaa.html
https://software.intel.com/en-us/articles/conservative-morphological-anti-aliasing-cmaa-update
http://www.cs.cmu.edu/afs/cs/academic/class/15869-f11/www/readings/reshetov09_mlaa.pdf
http://www.iryoku.com/smaa/
http://graphics.cs.williams.edu/papers/SAOHPG12/McGuire12SAO.pdf
https://sakibsaikia.github.io/graphics/2016/12/25/Screen-Space-Reflection-in-Killing-Floor-2.html
https://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/

 Public Imagination Technologies

PowerVR 31 Revision PowerVR SDK REL_18.2@5224491a

write-out, read-back and so on. This results in significantly increased memory bandwidth usage and
power consumption, and may result in poor performance.

The alternative solution is to use a single kernel (single pass – brute force) to achieve the desired
graphical effect. However, condensing the algorithm into that single pass may result in worse
performance than the multi-pass technique. This is because the algorithm may require many more
samples when performing in single pass mode to achieve the same level of quality. This will result in
increased system memory bandwidth usage over the multi-pass.

An example of this is Gaussian blur, which is commonly implemented as a multi-pass technique with a
horizontal and vertical pass. This significantly simplifies the complexity of the algorithm when
compared to a single pass approach, which requires significantly more samples. There are full screen
blur techniques that work with a single pass which have been proven to be efficient, such as Epic‟s
single pass circular based filter algorithm, instead of a two pass Gaussian. More information can be
found here.

To choose the ideal single or multi-pass algorithm, profile the algorithm to determine which technique
provides the most efficient usage of system memory bandwidth and USC.

5.9. Efficient Sprite Rendering

Rendering sprites efficiently may seem like a trivial exercise. However, without careful consideration
an application may be unresponsive and sluggish due to poor graphics performance. Traditional sprite
rendering tends to see textures drawn using alpha blending on to quads. These quads will consist of
large areas of alpha, either completely transparent (alpha value of 0), or partial alpha. Areas which

are completely transparent are traditionally discarded using either the discard keyword or alpha

testing, while areas of partial alpha undergo blending. Both have some form of impact on performance
versus fully opaque objects, meaning that a large number of sprites being drawn inefficiently can
seriously harm performance.

The discard keyword (see “PowerVR Performance Recommendations: The Golden Rules”) should

be avoided in favour of the much faster alpha blending.

Even when favouring alpha blending, performance can still be affected if there are many sprites. One
method to minimise the impact of several layers of blended sprites is to increase the geometry
complexity of the sprites, to reduce the amount of wasted transparent fragments. For example, if a
sprite is circular in shape and is rendered using the most optimal fitting quad, 22% of the fragments
processed are redundant. Significant performance improvements can be gained by reducing the
wasted transparency by increasing geometry complexity.

PowerVR hardware has excellent vertex processing capabilities and is designed to handle large
amounts of geometry data, far more than what is present in most sprite-based applications. Therefore,
increasing complexity should have minimal performance impact, and any impact this may have is
most likely outweighed by the savings of rendering less transparency. If the complexity is increased
with the previous case of a perfectly fitting quad around a circular sprite to that of a dodecagon
(twelve-sided polygon) the amount of wasted fragment processing can be reduced to just 3%.

Assuming radius of 64

vs

Increasing complexity and reducing processing

Also consider splitting opaque and alpha blended objects, such as UI elements, that appear in the
scene into separate draw submissions.

https://de45xmedrsdbp.cloudfront.net/Resources/files/GDC2014_Next_Generation_Mobile_Rendering-2033767592.pdf

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 32 Performance Recommendations

For the rasterization to be performed as efficiently as possible, the elements should be rendered in
the following order:

1. opaque scene elements

2. alpha blended scene elements

3. alpha blended UI elements

5.10. Physically Based Rendering and Per-Pixel LOD – Rogue
Performance

Physically Based Rendering (PBR) is a forward and deferred render compatible lighting model that
aims to better represent real world light behaviour. It is costlier to calculate than traditional diffuse,
specular, and ambient lighting, but it is very appealing to artists as it makes it easier to specify
complex material properties. PBR art pipelines are rapidly becoming the norm in AAA titles.

PBR Theory

Per-pixel texture LOD

PBR pairs each object in a scene with a roughness/gloss map. This texture allows artists to alter the
surface roughness and glossiness across an object, rather than having the same surface roughness
or glossiness over the whole object. An example use is to add areas of dull rust to a shiny pistol, or to
describe the properties of a rubber grip, all within a single draw call.

To add an element of reflectivity, environment maps are applied to all objects. Each environment map
contains progressively blurrier surfaces towards the bottom of the chain. The sampled roughness
value is used to calculate which MIP level of the environment map should be sampled.

Why is this approach a problem for Rogue?

Rogue subdivides a fragment shader USC task into 2×2 blocks of spatially aligned pixels. A primary
reason for doing this is so gradients can be calculated across a pixel-quad to determine how texture
filtering should be applied. It is also optimised for the standard rendering case where a LOD value is
calculated for a pixel-quad based on the calculated gradients. This allows the graphics core to batch
texture sample operations for the pixel-quad into a single TPU request.

When texture LOD is specified per-pixel, passed in via a varying, the graphics core assumes that
each pixel in the quad has a unique LOD. This causes the USC to issue a TPU request for each pixel

instead of the entire quad (USC instruction – pplod) which in turn causes one quarter TPU

throughput. This behaviour could lead to a memory bandwidth bottleneck in some applications.

Detailed further down is an example fragment shader. This example shows how an application can
get around this behaviour by using branching and performing bilinear filtering in software. By

branching to a textureLod operation with a constant value as the LOD parameter, the compiler will

no longer make assumptions about the LOD of each pixel. Therefore, the compiler will not
automatically fetch a sample per pixel in the pixel group.

Note: The workaround described below increases the number of USC instructions significantly.
Therefore, it is important to profile the application before implementing the workaround. If the
application is bandwidth or USC limited, this workaround may negatively impact performance.
Decreasing memory bandwidth in an application that is USC limited would yield no performance
benefits.

 Public Imagination Technologies

PowerVR 33 Revision PowerVR SDK REL_18.2@5224491a

The workaround

There is a GLSL workaround to avoid the one quarter speed path. However, it introduces dynamic
branching and additional instructions.

#version 310 es

in mediump float LOD;

in mediump vec3 TexCoords;

uniform lowp samplerCube EnvMap;

layout (location = 0) out lowp vec4 oColour;

mediump vec4 envSample(lowp samplerCube envMap_, mediump vec3 texCoords_, mediump float LOD_)

{

 mediump vec4 mip0;

 mediump vec4 mip1;

 if(LOD_ <= 4.0)

{

 if(LOD_ <= 2.0)

 mip1 = textureLod(envMap_, texCoords_, 1.0);

 else // LOD_ > 2.0

 mip1 = textureLod(envMap_, texCoords_, 3.0);

 }

else // LOD_ > 4.0

{

 if(LOD_ <= 6.0)

 mip1 = textureLod(envMap_, texCoords_, 5.0);

 else // LOD > 6.0

 mip1 = textureLod(envMap_, texCoords_, 7.0);

 }

 if(LOD_ <= 3.0)

{

 if(LOD_ <= 1.0)

 mip0 = textureLod(envMap_, texCoords_, 0.0);

 else // LOD_ > 1.0

 mip0 = textureLod(envMap_, texCoords_, 2.0);

 }

else // LOD_ > 3.0

{

 if(LOD_ <= 5.0)

 mip0 = textureLod(envMap_, texCoords_, 4.0);

 else // LOD_ > 5.0

 mip0 = textureLod(envMap_, texCoords_, 6.0);

 }

 bool isEven = ((int(LOD_) & 1) == 0);

 mediump float fractVal = fract(LOD_);

 mediump float invFractVal = 1.0 - fractVal;

 mediump float mixVal = isEven ? fractVal : invFractVal;

 return mix(mip0, mip1, mixVal);

}

void main()

{

 oColour = envSample(EnvMap, TexCoords, LOD);

}

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 34 Performance Recommendations

6. OpenGL ES Specific Optimisations

6.1. glClears and glColorMask

An application must avoid a partial clear (partial colour mask) at the start of a frame for two important
reasons:

1. The previous frame must be read in. This is performed by a full screen primitive reading it in as a
texture.

2. This texture must be masked out by the partial clear, which is done by submitting another full
screen primitive as a blend.

This will result in two overdraws before work on the frame begins. If the colour mask is changed to full

and glClear, this counts as a state change for the colour mask. A state change requires a flush to

be performed on the tile accelerator, and the clear becomes another full screen primitive. This adds
the second overdraw.

In the case of one full clear (no partial colour masks) at the start of frame, the fast clear path is
followed. This marks the whole frame as a set colour and does nothing, so no full screen primitive is
required, resulting in no pixels being drawn at all.

Note: PVRTrace GUI emulates this behaviour.

6.1.1. Invalidating frame buffer attachments

There is a way to prevent unnecessary memory transfers when rendering to a frame buffer object
using the OpenGL ES API. The application should invalidate frame buffers using the function

glInvalidateFramebuffer, for example GL_DEPTH_ATTATCHMENT or

GL_STENCIL_ATTATCHMENT. Calling this function tells the driver to discard the contents of the

specified frame buffer attachments, and therefore the driver does not need to store the contents of the
frame buffer attachments into system memory. This can save huge amounts of memory bandwidth
and improve performance significantly, as by default OpenGL ES will preserve frame buffer
attachments.

An application should call glClear, for example GL_DEPTH_BUFFER_BIT or

GL_STENCIL_BUFFER_BIT, specifying the buffers to clear. Calling this function will tell the driver that

it does not need to load the contents of the attachments specified from system memory, again saving
a huge amount of memory bandwidth.

6.2. Draw*Indirect and MultiDraw*IndirectEXT

6.2.1. Draw*Indirect

A standard OpenGL ES draw call requires passing the parameters of the draw via the function‟s

arguments. With the Draw*Indirect calls, the developer can instead pass in a structure containing

the draw parameters. An important benefit of this structure is that it does not have to be populated by
the CPU, as the graphics driver and SSBOs can be used to populate it. This enables the application
to issue a draw without any CPU-side involvement.

Example use case: Batched Draws

For optimal performance, applications should batch draws by state to reduce the number of API calls.
However, a separate draw call needs to be issued for each object in that batch, and draw calls have a

CPU overhead it is better to avoid. With Draw*Indirect, an SSBO can be populated with the vertex

data of all draws that share the same state. With this SSBO, only a single Draw*Indirect needs to

be made.

Example use case: Particle Systems

Another use case could be a particle system where the developer does not want to allocate a big
array for particles up front. Instead, a compute shader could be used to determine how many particles

 Public Imagination Technologies

PowerVR 35 Revision PowerVR SDK REL_18.2@5224491a

need to be rendered each frame. For complex particle systems, particles could be removed from the
render if they are obscured by opaque objects.

6.2.2. MultiDraw*IndirectEXT

These API calls are very similar to Draw*Indirect. The key difference is that an array of

Draw*IndirectCommand structures can be passed into each draw call.

Example use case: Occlusion Culling

In complex 3D navigation systems, draw calls tend to be grouped by map tiles. If a map tile intersects
the view frustum, all draw calls within the tile are issued to the graphics core. This can be optimised
with occlusion queries to further reduce the number of draw calls that are issued. With

MultiDraw*IndirectEXT there is a better option than occlusion queries. A compute shader can be

used to populate an array of Draw*IndirectCommand structures. These can then be used to issue

a single draw call for many objects sitting in many different tiles.

6.2.3. Instancing

Instancing is extremely useful for drawing many hundreds or thousands of objects that share the
same vertex data but have different world transformations.

Consider the example of drawing many thousands of leaf objects that are very simple in terms of

geometry. With the non-instanced approach, the application would need to loop X times calling

glDraw* on the same object each time. This is extremely expensive in terms of API overhead, even

if the geometry is relatively simple in nature. Every time a draw call is issued, the CPU must spend
time instructing the graphics core about how to draw the object. The actual rendering may be
extremely fast, but the API overhead completely cripples performance.

In the same scenario described previously but using the instanced approach, the application needs

only to call a single API function glDraw*Instanced once. This then allows the application to draw

the object X number of times. The instanced function behaves almost identically to glDraw* but

takes an extra parameter, primcount, which tells the graphics core how many instances of the

object it should render. This approach results in significantly more efficient behaviour.

To achieve optimal performance when implementing instancing, wherever possible use a power of
two instance divisor. The result of doing so is a reduction in the number of instructions required to
stream the data to the unified shader cores (USCs), effectively eliminating a potential bottleneck.

6.3. PBO Texture Uploads

PBOs are Pixel Buffer Objects. They were introduced in OpenGL ES 3.0 and enable applications to
map GL driver allocated textures into the applications address space. Once mapped, the application
can then read from or write to the texture from the CPU.

6.3.1. Optimal texture updates with PBOs

PBOs can be used to reduce the number of memory copies required to transfer data to memory
accessible to the graphics core. For example, if a very fast upload of texture data from file was
required, a PBO could be created and directly load the contents of the file into this memory. However,
if the file was loaded into application memory first and then copied into the PBO, there would be as

many memory copies performed as a call to glTexImage2D.

Transfer Queue (TQ) tasks

If glTexStorage has been used to define the texture, transfer tasks for PBO writes will be kicked

when glTexImage is called.

Note: the PBO must be unmapped before any GL calls are issued for the texture. Failing to do so will
result in an error.

If glTexStorage has not been used, the transfer task will be deferred to the first draw call that uses

the modified texture.

If there is already a copy of the texture in graphics memory, the driver will have to TQ copy the
mapped region of the texture from twiddled graphics memory to the driver‟s PBO buffer.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 36 Performance Recommendations

If the application does not need to preserve the mapped region, it may specify the

GL_MAP_INVALIDATE_RANGE_BIT access flag when calling glMapBufferRange. If the entire

texture can be invalidated, then the application can use the GL_MAP_INVALIDATE_BUFFER_BIT

flag.

6.4. Rogue Specific

6.4.1. Using glTexStorage2D and glTexStorage3D

glTexStorage2D and glTexStorage3D were introduced in OpenGL ES 3.0. They provide a

mechanism to define immutable-format textures. These are textures where the format and dimensions
of all levels cannot be altered after their creation. The main benefit of immutable-format textures is
that they reduce the amount of validation the driver must perform. Texture format validation is
performed up front and only once for all texture levels.

6.5. VAOs, UBOs, Transform Feedback Buffers and SSBOs in
OpenGL ES

This section provides a quick reference.

6.5.1. Vertex Array Objects (VAOs)

These encapsulate bound vertex state such as glVertexAttribPointer. Binding a VAO applies

all the encapsulated state to the global GL state. The ID Zero („0‟) is reserved by GL to represent the

default VAO. Always use VAOs when working with SGX or Rogue.

APIs

 OpenGL ES 1.x and 2.0: Extension (GL_OES_vertex_array_object), which is discussed

in greater detail in the PowerVR Supported Extensions document

 OpenGL ES 3.x: Core

6.5.2. Uploading uniforms (Uniform Buffer Objects)

Instead of uploading uniform data such as glUniformMatrix4fv and glUniform1 from client

memory, a Uniform Buffer Object (UBO) allows uniform data to be stored in an OpenGL ES buffer
object.

There are different approaches that can be used for supplying uniform data to shaders in OpenGL
ES. The most optimal method will vary depending on the use case.

Here are some general guidelines which can be considered when uploading shader uniforms to the
graphics core:

 If there are only a small number of uniforms, then setting the uniforms directly – for instance

through functions such as glUniformMatrix4fv and glUniform1f - is usually the most

efficient approach. This saves the overhead incurred when using a buffer.

 If there are many uniforms that are changing in bulk, then a Uniform Buffer Object (UBO) is the
most efficient method to use. Applications can map and un-map buffers to modify them. There
are several slots available to bind UBOs, so an application may use more than one for each draw,
such as split static, and dynamic data.

 Consider the case of several uniforms changing in bulk at the same time, and a small number,
perhaps one or two uniforms changing at different frequencies. The most efficient method is to
split those uniforms out of the UBO, and update them on their own separately from the rest of the
buffer. UBOs come with the general disadvantage of all buffers - if they are modified in any way,
then the driver will need to ensure that any previous operations are complete before updating the
buffer. Otherwise, the entire buffer must be ghosted (copied).

Use UBOs whenever they are suitable according to the guidelines above when deploying to platforms
with Rogue graphics cores. However, UBOs are not recommended when deploying to platforms with
SGX graphics cores.

 Public Imagination Technologies

PowerVR 37 Revision PowerVR SDK REL_18.2@5224491a

APIs

 OpenGL ES 1.x: Not exposed

 OpenGL ES 2.0: Exposed (IMG_uniform_buffer_object)

 OpenGL ES 3.x: Core

6.5.3. Transform buffer objects

These buffers are used for transform feedback. When these are bound, post-transform vertex data is
automatically resolved to the buffer by the graphics hardware. The buffers can be written to/read by
the graphics hardware, but cannot be accessed by the CPU. Always use these buffers when working
on Rogue, however, they are not available for SGX architectures.

APIs

 OpenGL ES 1.x and 2.0: Not exposed

 OpenGL ES 3.x: Core

6.5.4. SSBOs – Shader Storage Buffer Objects

SSBOs are similar to UBOs. For example, storage blocks are defined in GLSL, and SSBOs are bound
to SSBO binding points.

Unlike UBOs, SSBOs:

 can be written to by the graphics core

 can be used as compute kernel input/output

 can be much larger than UBOs - megabytes instead of kilobytes.

 have variable storage up to the range bound for the given buffer. The actual size of the array,
based on the range of the buffer bound, can be queried at runtime in the shader using the length
function on the unbounded array variable.

Although SSBOs have similar features to UBOs and transform feedback buffers, the flexibility comes
at a cost. SSBO reads may be costlier than UBOs, as data is fetched from system memory like a
buffer texture instead of being pre-loaded into shader registers as UBOs would. Unlike transform
feedback buffers that are written to automatically when bound, SSBOs need to be written to explicitly
in shader code. SSBOs are not available on SGX.

When using PowerVR Rogue graphics cores, favour UBOs and transform feedback buffers where
possible, as they take optimal paths through the pipeline. SSBOs are best suited for draw
indirect/dispatch compute indirect use cases.

APIs

 OpenGL ES 1.x, 2.0 and 3.0: Not available

 OpenGL ES 3.1+: Core

6.6. Synchronisation

The most efficient method for hardware to schedule tasks is vertex processing executing in parallel to
fragment tasks. To achieve this, the application should aim to remove functions which cause
synchronisation between the CPU and graphics core wherever possible. In OpenGL ES this includes

synchronisation functions such as glReadPixels, glFinish, eglClientWaitSync, and

glWaitSync.

 On PowerVR hardware calling the function glFlush results in a NOP, no work is carried out.

 On PowerVR hardware calling the function glFinish flushes (kicks) all outstanding renders in a

context, as per the OpenGL ES specification.

 On PowerVR hardware calling the function eglClientWaitSync flushes all outstanding renders

in a context. It then waits by blocking the calling thread, or until x nanoseconds have passed for

the specified sync object to be signalled. In other words, it waits for the work to be completed.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 38 Performance Recommendations

 Calling the function glClientWaitSync results in similar behaviour to calling the function

eglClientWaitSync.

 Calling the function glWaitSync results in similar behaviour to calling the function

eglClientWaitSync, however currently the OpenGL ES specification does not support a

timeout.

6.6.1. Multithreading in OpenGL ES

Synchronisation between OpenGL ES threads is done by eglMakeCurrent. It performs the

following:

 Binds the supplied context to the current rendering thread and the supplied draw/read
surfaces.

 If the calling thread already has the current rendering context, then all outstanding operations
are flushed and the context is marked as no longer current.

 If the draw and read parameters are set to EGL_NO_SURFACE and context is set to

EGL_NO_CONTEXT, then the current context is released from the calling thread without

assigning it to a new one.

Usually the driver must flush all outstanding operations unless the currently bound context is released
and then rebound. In this latter case, all outstanding operations have already been kicked. The driver
has to wait for operations to finish if the context/surface pairs are broken up and paired up with a
different context/surface. For example, surface kept/context changed, or context kept/surface
changed. In the case of releasing the current context and surfaces without assigning a new one, the
driver must flush all outstanding operations but does not need to wait for them. Therefore, calls to

eglMakeCurrent should be kept to a minimum.

Using multi-threaded rendering usually has no performance benefits, and sometimes it can lead to
worse performance. For example, the worst use case is to frequently bind a single graphics context to

different threads using eglMakeCurrent. In this case, the API calls have the same cost as a single

threaded render as the API call submission is serialised. However, there is the additional overhead of
the context switch, which means that performance will be less optimal than a single threaded
renderer.

For the best possible performance, rendering threads should be created at start up. A primary thread
should be used for all rendering. Additional threads created with a shared context should only be used
for shader compilation and buffer data upload. The number of background threads should be kept to a
minimum, preferably one thread per-CPU core. Creating threads in excess will lead to
unmaintainable, hard to debug code.

6.7. Frame-buffer Down Sampling

PowerVR hardware provides an efficient fast path for down sampling frame buffer attachments, which
can be extremely useful for certain post-processing techniques such as bloom and screen space

reflections. The OpenGL ES function glFramebufferTexture2DDownsampleIMG allows an

application to attach a buffer to a frame buffer which is at a lower resolution than the frame buffer
itself, and have the hardware automatically down sample the attachment. All PowerVR hardware
exposes at least a 2 x 2 downscale. Other down sampling modes may be available depending on the
exact hardware, and it is possible for an application to query this information at runtime.

For further information on this extension please refer to the following Khronos extension page here.

6.8. Pixel Local Storage Extension

Graphics techniques such as deferred lighting are often implemented by attaching multiple colour
render targets to a frame buffer object, rendering the required intermediate data, and then sampling
from this data as textures. While flexible, this approach even when implemented optimally (see
section 5.1) still consumes a large amount of system memory bandwidth, which comes at a premium
on mobile devices.

OpenGL ES 3.x provides the extension shader_pixel_local_storage(2) which enables

communication between fragment shader invocations which cover the same pixel location. This
extension enables applications to store the intermediate per-pixel data on-chip, for example the G-

https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_framebuffer_downsample.txt

 Public Imagination Technologies

PowerVR 39 Revision PowerVR SDK REL_18.2@5224491a

Buffer, in a deferred lighting pass. This memory can be read from and written to by shader invocations
at the same pixel location.

The extension enables tile-based renderers such as PowerVR graphics cores to efficiently make use
of tile memory. These intermediate buffers are never allocated or written out to system memory, as
they only exist in on-chip memory.

This extension is extremely beneficial for mobile and embedded systems and using it correctly will
result in a significant reduction in memory bandwidth usage. Most techniques - such as deferred
lighting - that write intermediate data out to system memory then sample from it at the same pixel
location, can be optimised using this extension.

For further information on this extension please refer to the following Khronos extension page here.

http://khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_pixel_local_storage2.txt

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 40 Performance Recommendations

7. Vulkan Specific Optimisations

7.1. A Brief Introduction

Vulkan is a new generation graphics and compute API. It has been built upon components from
AMD‟s Mantle API, which was donated to Khronos by AMD. Vulkan is a highly efficient, streamlined
and modern API designed to take advantage of current and future device architectures. It works on a
wide variety of platforms such as desktop PCs, consoles, mobile devices and embedded devices.

Vulkan is designed from the ground up to take advantage of modern CPU architecture such as multi-
core and multi-threaded systems. Rendering work can be spread over many logical threads - our
Vulkan Gnome Horde demo in our SDK is a good demonstration of this aspect.

The application does not necessarily need to implement multi-threading to take advantage of Vulkan
as the API is very efficient, which results in extremely low CPU overhead. Vulkan requires less work
to be carried out by the CPU to instruct the graphics core, which significantly reduces CPU usage. For
mobile devices this can reduce thermal output and power consumption.

Vulkan feels more akin to modern object orientated programming languages. The rendering state is
packaged into easily manageable independent API objects, rather than one giant global state
machine as found in OpenGL ES.

7.2. The PowerVR with Vulkan Advantage

Tile based renderers, such as PowerVR devices, can enjoy several advantages that Vulkan brings to
the table.

7.2.1. Explicitly declared dependencies

All dependencies are explicitly declared ahead of time by the application. This means the driver can
execute the commands in the most optimal way. This work had to be done on-the-fly in OpenGL ES
and would usually never be optimal as the driver has to guess.

More importantly for tile-based renderers, the driver can package the work into tiler and rasterizer
tasks which are directly consumable by the underlying hardware.

7.2.2. Fine-grained synchronisation

Applications have much finer control over synchronisation, compared to OpenGL ES, between objects
and memory. The driver can build a comprehensive dependency chain, which means only caches that
absolutely need to be flushed are, and operations that absolutely need to be completed are waited on.
This means the graphics core can be used more efficiently, as work can be scheduled in advance
with tiler tasks to get a head start while waiting on a fragment task.

7.2.3. Render passes

The render pass object describes a render from start to finish. It disallows any operations that would
cause a mid-frame flush during rasterization, which could stall the graphics hardware. This also
means that the graphics core can more effectively use on-chip storage, because the intermediate
frame buffer attachments that do not need to be stored are never written back to system memory.
This can significantly reduce memory bandwidth and save power.

7.2.4. Explicit render state

The Vulkan driver is aware of the entire render state through pipeline objects ahead of time. Shaders
can be better optimised based on input/output and various fixed function states such as blending.
Consider operations such as shader patching, where code must be added to a shader to perform a
certain graphical operation, for instance alpha blending on PowerVR. These operations can now be
done in advance before the shader is compiled, because the entire render state is already known.
This can improve the graphics core‟s efficiency and reduce hitching, as this extra work no longer
needs to be carried out at draw time.

https://www.youtube.com/watch?v=P_I8an8jXuM

 Public Imagination Technologies

PowerVR 41 Revision PowerVR SDK REL_18.2@5224491a

7.3. Memory Types

Vulkan provides several memory types. The specification orders them based on their performance. An
application should attempt to use the fastest memory types wherever possible.

The list below contains the memory types and common use cases:

 The memory type VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT is recommended when

allocating static device buffers (created once at initialisation) used to store data that is
exclusively used by the device. This type of memory should be preferred as it will offer the
best performance for the application, as it provides the fastest type of memory available.

 The memory type VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT is recommended when

allocating buffers used to upload data to graphics device. This memory type should always be
preferred when implementing staging buffers, which is the optimal method for passing data to

the graphics device. The memory allocation should avoid the flags DEVICE_LOCAL,

HOST_COHERENT and HOST_CACHED when using this memory type for staging buffers.

 The memory type VK_MEMORY_PROPERTY_HOST_COHERENT_BIT is recommended when

allocating buffers used to update per frame data, such as uniform buffers. This will provide the
optimal memory type available for performing coherent data transfers between the CPU and
graphics hardware.

Note: The PowerVR driver does not currently support host cached coherent memory types, but this is
subject to change in future driver releases.

Note: All current PowerVR based platforms use Unified Memory Architecture (UMA), meaning that
memory types are less critical than on a system employing a Discrete Memory Architecture
(DMA). Buffers may be left mapped without negatively impacting performance.

Recommended frequency of allocation

Vulkan provides the function vkAllocateMemory to allocate memory objects. On PowerVR

hardware, the function vkAllocateMemory should be called as infrequently as possible. Memory

allocations should be in the tens of megabytes at a time, and ideally called during initialisation. If the
application requires finer-grained allocations, then it should implement its own memory sub-allocation.

7.4. Pipelines

In Vulkan a pipeline object holds all the graphics state information. The following states are described:

 primitive type

 depth/stencil test

 blending

 which shaders to use

 vertex layout

 multi-sampling

 face culling

 polygon winding

Pipelines are created from a description of all shader stages and any relevant fixed function stages.
This allows the shaders to be optimised based on their inputs and outputs, and eliminates expensive
draw time state validation/error checking which is done when the object is created. This can increase
performance and reduce hitching which removes unpredictability.

7.4.1. Pipeline barriers

On PowerVR hardware, Vulkan pipeline barriers are free if the application does not have to wait for
work to be completed, and no data conversion is required.

The most efficient manner for the hardware to schedule tasks is vertex processing executing in
parallel to fragment tasks. Therefore, the application should aim to remove unnecessary pipeline
dependencies and barriers wherever possible. Smart usage of sub-pass dependencies can help to

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 42 Performance Recommendations

avoid pipeline bubbles, where no work can be carried out. An example of this is sub-pass
dependencies, where the fragment stage is waiting on the vertex stage to finish.

It may be beneficial to define a dependency by region, which allows for finer control over fence
granularity. This is particularly the case if the barriers are being used in fragment stages to fence
reads of an input attachment.

7.4.2. Pipeline caching

Pipeline cache objects allow the result of pipeline construction to be reused between pipelines and
between runs of an application.

When using the Vulkan API, an application should always use pipeline caching wherever possible, as
this means the driver can compile subsequent pipelines much quicker. Ideally, pipelines should be
created at initialisation rather than during the main render loop. Using warm-up frames to cache
pipeline objects before drawing is not needed, as optimisation is carried out when the pipeline is
created, rather than when it is loaded for use.

7.4.3. Derivative pipelines

A pipeline derivative is a child pipeline created from a parent pipeline, where the child and parent are
expected to share much commonality. The goal of derivative pipelines is that they are cheaper to
create using the parent as a starting point, and that they are more efficient on either host or device to
switch/bind between children of the same parent.

Currently the PowerVR graphics driver does not take advantage of derivative pipelines in Vulkan and
therefore applications will see no performance benefits from using them. It is still advised to use
Vulkan correctly by using derivative pipelines where applicable, so that the application can take
advantage of the feature when future drivers support it.

7.5. Descriptor Sets

In Vulkan, the base binding unit is a descriptor which represents a single binding, although descriptors
are not bound individually. Instead, they are grouped together into descriptor set objects, which are
opaque objects that contain storage for a set of descriptors. Each descriptor set has a descriptor set
layout which describes the resources, such as buffers and image resources (samplers) that will be
bound when drawing. The descriptor set is bound before any drawing commands, just like a vertex
buffer or frame buffer.

7.5.1. Multiple descriptor sets

On PowerVR hardware using multiple Vulkan descriptors for a single draw call has minimal to no
impact on performance, due to the driver being able to gather all descriptors on the graphics core.
Therefore, a scheme should be chosen that works the best for the particular use case in the
application.

7.5.2. Pooled descriptor sets

On PowerVR hardware it is possible to allocate pooled descriptor sets in a fragmentation-less
memory pool, depending on the how the descriptor sets and descriptor pool are constructed.

For the driver to perform a fragmentation-less allocate or free, all descriptor sets must be allocated
with the same size, and the descriptor pool must have the

VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT flag set.

Note: If different sized descriptor sets are allocated, the driver will fall back to a non-pooled memory
scheme.

7.6. Push Constants

Vulkan provides a high speed path to modify constant data in pipelines known as push constants,
which are expected to outperform memory-backed resource updates.

On PowerVR, hardware push constants are guaranteed to be placed in fast constant buffers, which
are located in on-chip memory.

 Public Imagination Technologies

PowerVR 43 Revision PowerVR SDK REL_18.2@5224491a

Push constants also have an efficient allocation mechanism in the command buffer, so an application
should use push constants wherever it is appropriate.

Note: Small, statically indexed UBOs may also be placed in constant buffers, but this behaviour is not
guaranteed.

7.7. Queues

The PowerVR driver exposes a universal graphics queue family (Vulkan graphics, compute, and
present) with two queues and a single, separate sparse binding queue. The hardware will aim to
parallelise work as much as possible, depending on currently available resources such as overlapping
vertex, fragment, and compute. This can be verified by profiling the application with PVRTune.

While an application may use a single Vulkan queue, it may be beneficial to use multiple queues. It is
harder to accidentally serialise work, which costs performance, across different queues.

7.8. Command Buffers

Vulkan command buffers are objects used to record various API commands, such as drawing
operations and memory transfer. They can then be subsequently submitted to a device queue for
execution by the hardware. The advantage of this approach is that all the hard work of setting up the
drawing commands can potentially be done in advance, and in multiple threads.

Vulkan provides two levels of command buffers:

 Primary command buffers, which can execute secondary command buffers, and which are
submitted to queues

 Secondary command buffers, which can be executed by primary command buffers, and which
are not directly submitted to queues.

7.8.1. Command buffer usage flags

On PowerVR hardware the command buffer usage flag should be left unset (0) unless the application

requires specific behaviour.

The following list contains the current usage flags that the API exposes, and their appropriate use
cases:

 VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT – this flag informs the driver that

the command buffer will be submitted multiple times. As a result, the driver must perform a
copy of the entire buffer after it is submitted to a queue. Applications should only set this flag
if absolutely necessary.

Note: This method is faster than manually creating another identical buffer every frame. If the
application requires this type of functionally, then the flag should be set on secondary
command buffers, and primary command buffers are always rebuilt. The copy of
secondary command buffers is made when the secondary command buffer is recorded

into the primary command buffer (vkCmdExecuteCommands) rather than when the

buffer is submitted to a queue (vkQueueSubmit).

 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT – this flag must be set if the

command buffer is a secondary, and it is executing inside a render-pass.

 VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT – currently this flag does not have

any effect on how the driver processes the command buffer when submitted. However, it is
possible that future drivers may use this flag as a hint about how much time should be spent
on compiling the command buffer. Therefore, for maximum portability this should be set if the
application intends to submit the command buffer only once.

7.8.2. Transient command buffers

Currently on PowerVR hardware there is no performance benefit gained from using Vulkan transient
command buffers, however this subject to change with future driver updates.

https://www.imgtec.com/developers/powervr-sdk-tools/pvrtune/

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 44 Performance Recommendations

7.8.3. Secondary command buffers

In Vulkan, the use of secondary command buffers may benefit performance significantly. An
application may build several secondary command buffers on separate threads preparing commands
for the next frame, while the main thread is executing the primary command buffer. Once the
secondary command buffers are ready by signalling through some sort of thread synchronisation, the
work can be enqueued into the primary command buffer and the process can be repeated.

7.9. Render Pass

In Vulkan, a render pass represents a collection of frame buffer attachments, sub-passes, and
dependencies between the sub-passes. It also describes how the attachments are used over the
course of the sub-passes such as with load and store operations. Render passes group together
rendering commands that are all targeted at the same frame buffer into well-defined tasks – they
represent the structure of the frame.

Render passes operate in conjunction with frame buffer objects. Frame buffers represent a collection
of specific memory attachments that a render pass instance uses.

It is advisable that applications use as few render passes as possible, because changing render
targets is a fundamentally expensive operation.

7.9.1. Sub-passes

In Vulkan a sub-pass represents a phase of rendering that reads and writes a subset of the
attachments in a render pass. Rendering commands are recorded into a particular sub-pass of a
render pass instance.

Readable attachments are known as input attachments and contain the result of an earlier sub-pass
at the same pixel location. An important property of input attachments is that they guarantee that each
fragment shader only accesses data produced by shader invocations at the same pixel location.

On PowerVR hardware, make use of sub-passes and sub-pass dependencies wherever appropriate,
because the driver will aim to collapse them whenever possible. The sub-pass (attachments) will stay
entirely in pixel local storage (on-chip memory) and will never be written out to system memory,
significantly reducing transfers to system memory. This makes it a very efficient method for
implementing a deferred lighting pipeline.

7.9.2. Load and store ops

Vulkan provides explicit control over load and store operations on frame buffer attachments.

On PowerVR hardware the most optimal settings are defined below:

 Load operation – should be set to either VK_ATTACHMENT_LOAD_OP_DONT_CARE or

VK_ATTACHMENT_LOAD_OP_CLEAR wherever possible. This is preferred over using the

function vkCmdClearAttachment. The graphics driver will be informed that it does not need

to load the buffers data from system memory, saving enormous amounts of bandwidth

 Store operation – should be set to VK_ATTACHMENT_STORE_OP_DONT_CARE, unless the

attachment is required for later use, as in preserve the data.

Note: There is a rare situation where the graphics core enters smart parameter mode (SPM) which
occurs when the parameter buffer overflows, causing the driver to perform a partial render. In
this case, a load/store operation will be performed to preserve the contents of the attachments.
This operation must be carried out, so that the state may be restored when rendering resumes.

7.9.3. Transient attachments

Vulkan render pass objects may also contain transient attachments. This type of attachment can be
read and written by one or more sub-passes, but is ultimately discarded at the end of the pass.
Therefore, the data is never written out to main memory, saving valuable memory bandwidth.

Older PowerVR graphics drivers do not take advantage of Vulkan transient attachments. It is still
advised that an application makes use of this feature in Vulkan, as devices with newer drivers will fully
support this feature.

 Public Imagination Technologies

PowerVR 45 Revision PowerVR SDK REL_18.2@5224491a

7.9.4. Optimal number of attachments

On PowerVR hardware, it is recommended to have fewer than eight input and output frame buffer
attachments across an entire render-pass.

7.9.5. Attachment order

On PowerVR hardware, the order of input attachments will not adversely affect performance. The
driver will re-order the attachments as required, producing the optimal order for the graphics core
when the render-pass is compiled.

7.10. MSAA

To perform MSAA optimally using Vulkan on PowerVR hardware, the application should use a lazily
allocated MSAA frame buffer attachment, which will be used to render the scene to. The store

operation flag should be set to VK_ATTACHMENT_STORE_OP_DONT_CARE as this tells the driver to

discard the contents of this buffer after use to save memory bandwidth - the buffer is not to be
preserved. There must also be a second frame buffer attachment, which will be used to resolve multi-
sampled image. This attachment should have the store operation flag set to

VK_ATTACHMENT_STORE_OP_STORE.

This method ensures that the multi-sampled buffer is only allocated by the driver on-chip when
required, and the MSAA resolve is performed on-chip and only then written out to system memory.

// Multi-sampled frame buffer attachment that is rendered to.

attachments[0].format = swapChain.colorFormat;

attachments[0].samples = VK_SAMPLE_COUNT_2_BIT; // 2x MSAA

attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;

// No longer required after resolve, this will save memory bandwidth

attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;

attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;

attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;

attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;

attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

// The frame buffer attachment where the multi-sampled image will be resolved to.

attachments[1].format = swapChain.colorFormat;

attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;

attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;

attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE; // Store the resolved image

attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;

attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;

attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;

attachments[1].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

7.11. Image Layout

During image creation, the initial image format does not affect performance in any way. The format

VK_IMAGE_LAYOUT_UNDEFINED or the format VK_IMAGE_LAYOUT_PREINITIALIZED may be

used without any impact on application performance.

If the application is using an image as a specific attachment type to a frame buffer such as colour,

stencil or depth, then the final image layout as defined in VkAttachmentDescription should be

set to the appropriate optimal layout. This depends on the attachment usage such as

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL for use as a colour attachment.

Imagination Technologies Public

Revision PowerVR SDK REL_18.2@5224491a 46 Performance Recommendations

8. Contact Details
For further support, visit our forum:

http://forum.imgtec.com

Or file a ticket in our support system:

https://pvrsupport.imgtec.com

To learn more about our PowerVR Graphics SDK and Insider programme, please visit:

http://www.powervrinsider.com

For general enquiries, please visit our website:

http://imgtec.com/corporate/contactus.asp

http://forum.imgtec.com/
https://pvrsupport.imgtec.com/
http://www.powervrinsider.com/
http://imgtec.com/corporate/contactus.asp

	1. Introduction
	1.1. Document Overview
	1.2. The Golden Rules
	1.3. Optimal Development Approach
	1.4. Understanding Rendering Bottlenecks
	1.5. Optimising Applications for PowerVR Graphics Cores
	1.5.1. Know the target
	Graphics architecture
	Mobile graphics APIs
	Thermal Design Power (embedded devices)

	1.5.2. Analysing an Application’s Performance
	The process of optimising graphics applications
	The right tools for the job

	2. Optimising Geometry
	2.1. Geometry Complexity
	2.2. Primitive Type
	2.3. Data Types
	2.4. Interleaving Attributes
	2.5. Vertex Buffer Objects – OpenGL ES
	2.6. Draw Call Size
	2.7. Triangle Size
	Parameter buffer

	2.8. Face Culling
	2.9. Sorting Geometry
	2.9.1. Distance
	2.9.2. Render state
	Render to Texture

	2.10. Z Pre-pass

	3. Optimising Textures
	3.1. Texture size
	3.1.1. Demystifying NPOT
	OpenGL ES Support
	GL_IMG_texture_npot
	Guidelines

	3.2. Texture Compression
	3.2.1. PVRTexTool
	3.2.2. Why use PVRTC?
	Performance improvement
	Power consumption

	3.2.3. Image file compression versus texture compression

	3.3. Mipmapping
	3.3.1. Advantages
	3.3.2. Generation
	3.3.3. Filtering

	3.4. Texture Sampling
	3.4.1. Texture filtering
	3.4.2. Texel Fetch
	3.4.3. Dependent texture read
	3.4.4. Wide floating point textures

	3.5. Texture Uploading
	3.5.1. Texture warm-up
	3.5.2. Texture formats and precision

	3.6. Mathematical Look-ups

	4. Optimising Shaders
	4.1. PVRShaderEditor
	4.1.1. GLSL optimiser

	4.2. Choose the Right Algorithm
	4.3. Know Your Spaces
	4.4. Flow Control
	4.4.1. Discard
	4.4.2. Shader group vote – OpenGL ES

	4.5. Demystifying Precision
	4.5.1. Highp
	4.5.2. Mediump
	4.5.3. Lowp
	SGX
	Rogue

	4.5.4. Swizzling
	4.5.5. Attributes
	4.5.6. Varyings
	Packing varyings

	4.5.7. Samplers
	4.5.8. Uniforms
	Uniform variables represent values that are constant for all vertices or fragments processed as part of a draw call. They should be used to pass data that can be computed once on the CPU, and then not changed for the duration of a draw call. Unlike at...
	Using uniforms is significantly cheaper than using varyings; however keep the following considerations in mind when using uniforms:
	Constant calculations

	4.5.9. Conversion costs

	4.6. Scalar Operations
	4.7. Constant Data in Shaders
	4.8. Geometry / Tessellation Shaders

	5. Optimising Specific Techniques
	5.1. Using Multiple Render Targets Efficiently
	5.1.1. Recommended HDR texture formats
	RGBM & RGBdiv8

	5.2. Preferred Lighting Solution
	5.3. Preferred Shadowing Solution
	5.4. MSAA Performance
	5.5. Preferred Analytical AA Solution
	5.6. Screen Space Ambient Occlusion
	5.7. Ray-Marching
	5.8. Separable Kernels
	5.9. Efficient Sprite Rendering
	5.10. Physically Based Rendering and Per-Pixel LOD – Rogue Performance
	Per-pixel texture LOD
	Why is this approach a problem for Rogue?
	The workaround

	6. OpenGL ES Specific Optimisations
	6.1. glClears and glColorMask
	6.1.1. Invalidating frame buffer attachments

	6.2. Draw*Indirect and MultiDraw*IndirectEXT
	6.2.1. Draw*Indirect
	Example use case: Batched Draws
	Example use case: Particle Systems

	6.2.2. MultiDraw*IndirectEXT
	Example use case: Occlusion Culling

	6.2.3. Instancing

	6.3. PBO Texture Uploads
	6.3.1. Optimal texture updates with PBOs
	Transfer Queue (TQ) tasks

	6.4. Rogue Specific
	6.4.1. Using glTexStorage2D and glTexStorage3D

	6.5. VAOs, UBOs, Transform Feedback Buffers and SSBOs in OpenGL ES
	6.5.1. Vertex Array Objects (VAOs)
	APIs

	6.5.2. Uploading uniforms (Uniform Buffer Objects)
	APIs

	6.5.3. Transform buffer objects
	APIs

	6.5.4. SSBOs – Shader Storage Buffer Objects
	APIs

	6.6. Synchronisation
	6.6.1. Multithreading in OpenGL ES

	6.7. Frame-buffer Down Sampling
	6.8. Pixel Local Storage Extension

	7. Vulkan Specific Optimisations
	7.1. A Brief Introduction
	7.2. The PowerVR with Vulkan Advantage
	7.2.1. Explicitly declared dependencies
	7.2.2. Fine-grained synchronisation
	7.2.3. Render passes
	7.2.4. Explicit render state

	7.3. Memory Types
	Recommended frequency of allocation

	7.4. Pipelines
	7.4.1. Pipeline barriers
	7.4.2. Pipeline caching
	7.4.3. Derivative pipelines

	7.5. Descriptor Sets
	7.5.1. Multiple descriptor sets
	7.5.2. Pooled descriptor sets

	7.6. Push Constants
	7.7. Queues
	7.8. Command Buffers
	7.8.1. Command buffer usage flags
	7.8.2. Transient command buffers
	7.8.3. Secondary command buffers

	7.9. Render Pass
	7.9.1. Sub-passes
	7.9.2. Load and store ops
	7.9.3. Transient attachments
	7.9.4. Optimal number of attachments
	7.9.5. Attachment order

	7.10. MSAA
	7.11. Image Layout

	8. Contact Details

