
PVR File Format Specification

Revision: 1.0
11/02/2020

Public

Copyright © 2020 Imagination Technologies Limited. All rights reserved.

 PVR File Format Specification — Revision 1.0

Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is',
without any warranty of any kind. Redistribution of this document is permitted with acknowledgement of the source.

Published: 11/02/2020-09:12

2 Public Imagination Technologies Ltd

 PVR File Format Specification — Revision 1.0

Contents

1. Introduction to PVR.. 4

2. Header Format... 5

3. Metadata Format..9

4. Texture Data...11

5. Contact Details.. 12

Imagination Technologies Ltd Public 3

1. Introduction to PVR — Revision 1.0

1. Introduction to PVR
An overview of the three different elements which make up PVR files

Document Overview

The purpose of this document is to act as a specification for the PVR file format (PVR
specification version 3.0.0).

What is PVR?

PVR is a texture container format used to store textures for graphical applications.

PVR files are divided into three main three elements:

1. A header element which is 52 bytes in length

2. Zero or more metadata elements with length determined by the header

3. A texture data element with length determined by the header

The broad layout of a PVR file is shown below.

This document will go through the structure of each of these elements in detail in their
own sections.

4 Public Imagination Technologies Ltd

2. Header Format — Revision 1.0

2. Header Format
A summary of the different elements which make up the header block of PVR files

The header element contains information about the data stored in a PVR file. This
header information gives all of the details required to understand and process the data
in the file.

This section gives a brief overview of the different sections of the header file. The block
diagram below illustrates the relative sizes of each of the elements of the header.

Version (Unsigned 32-bit Integer)

Version contains the version of the PVR header format.

The exact value of Version will be one of the following depending upon the endianess of
the file and the computer reading it:

• 0x03525650, if endianess does match.

• 0x50565203, if endianess does not match.

Flags (Unsigned 32-bit Integer)

The purpose of the Flags field is to allow for future proofing of the header format, giving
the format the ability to specify flags that can dictate how the texture data is stored.

The currently supported flags are:

Name Value Description
No Flag 0 No flag has been set.

Pre-multiplied 0x02 When this flag is set, colour values within the texture have
been pre-multiplied by the alpha values.

Pixel Format (Unsigned 64-bit Integer)

Pixel Format is a 64-bit unsigned integer containing the pixel format of the texture data,
where the most significant 4 bytes have been set to ‘0’ and the least significant 4 bytes
will contain a 32-bit unsigned integer value identifying the pixel format.

The valid values are:

Formats Value
PVRTC 2bpp RGB 0

PVRTC 2bpp RGBA 1

Imagination Technologies Ltd Public 5

2. Header Format — Revision 1.0

Formats Value
PVRTC 4bpp RGB 2

PVRTC 4bpp RGBA 3

PVRTC-II 2bpp 4

PVRTC-II 4bpp 5

ETC1 6

DXT1 7

DXT2 8

DXT3 9

DXT4 10

DXT5 11

BC1 7

BC2 9

BC3 11

BC4 12

BC5 13

BC6 14

BC7 15

UYVY 16

YUY2 17

BW1bpp 18

R9G9B9E5 Shared Exponent 19

RGBG8888 20

GRGB8888 21

ETC2 RGB 22

ETC2 RGBA 23

ETC2 RGB A1 24

EAC R11 25

EAC RG11 26

ASTC_4x4 27

ASTC_5x4 28

ASTC_5x5 29

ASTC_6x5 30

ASTC_6x6 31

ASTC_8x5 32

ASTC_8x6 33

ASTC_8x8 34

ASTC_10x5 35

ASTC_10x6 36

6 Public Imagination Technologies Ltd

2. Header Format — Revision 1.0

Formats Value
ASTC_10x8 37

ASTC_10x10 38

ASTC_12x10 39

ASTC_12x12 40

ASTC_3x3x3 41

ASTC_4x3x3 42

ASTC_4x4x3 43

ASTC_4x4x4 44

ASTC_5x4x4 45

ASTC_5x5x4 46

ASTC_5x5x5 47

ASTC_6x5x5 48

ASTC_6x6x5 49

ASTC_6x6x6 50

If the most significant 4 bytes contain a value, the full 8 bytes are used to determine
the pixel format. The least significant 4 bytes contain the channel order, each byte
containing a single character, or a null character if there are fewer than four channels,
e.g., {‘r’, ‘g’, ‘b’, ‘a’} or {‘r’, ‘g’, ‘b’, ‘\0’}.

The most significant 4 bytes state the bit rate for each channel in the same order, each
byte containing a single 8-bit unsigned integer value, or zero if there are fewer than
four channels, e.g., {8, 8, 8, 8} or {5, 6, 5, 0}.

Colour Space (Unsigned 32-bit Integer)

Colour Space is a 32-bit unsigned integer that specifies which colour space the texture
data is in.

The two valid values are:

Colour Space Value Description
Linear RGB 0 Texture data is in the Linear RGB colour space

sRGB 1 Texture data is in the Standard RGB colour space

Channel Type (Unsigned 32-bit Integer)

Channel Type is a 32-bit unsigned integer that determines the data type of the colour
channels within the texture data.

Valid values are:

Data Type Value
Unsigned Byte Normalised 0

Signed Byte Normalised 1

Unsigned Byte 2

Imagination Technologies Ltd Public 7

2. Header Format — Revision 1.0

Data Type Value
Signed Byte 3

Unsigned Short Normalised 4

Signed Short Normalised 5

Unsigned Short 6

Signed Short 7

Unsigned Integer Normalised 8

Signed Integer Normalised 9

Unsigned Integer 10

Signed Integer 11

Float 12

Height (Unsigned 32-bit Integer)

Height is a 32-bit unsigned integer representing the height of the texture stored in the
texture data, in pixels.

Width (Unsigned 32-bit Integer)

Width is a 32-bit unsigned integer representing the width of the texture stored in the
texture data, in pixels.

Depth (Unsigned 32-bit Integer)

Depth is a 32-bit unsigned integer representing the depth of the texture stored in the
texture data, in pixels.

Num. Surfaces (Unsigned 32-bit Integer)

Num. Surfaces is used for texture arrays. It is a 32-bit unsigned integer representing
the number of surfaces within the texture array.

Num. Faces (Unsigned 32-bit Integer)

Num. Faces is a 32-bit unsigned integer that represents the number of faces in a cube
map.

MIP-Map Count (Unsigned 32-bit Integer)

MIP-Map Count is a 32-bit unsigned integer representing the number of MIP-Map levels
present including the top level. A value of one, therefore, means that only the top level
texture exists.

Meta Data Size (Unsigned 32-bit Integer)

Meta Data Size is a 32-bit unsigned integer representing the total size (in bytes) of all
the metadata following the header.

8 Public Imagination Technologies Ltd

3. Metadata Format — Revision 1.0

3. Metadata Format
A summary of the different elements which make up the metadata block of PVR files

Metadata allows for the creator of a PVR file to store custom information within the PVR
file relating to the storage.

FourCC (Four-byte array)

FourCC is a four-byte identifier (consisting of single byte characters or integers)
whose value, combined with the value of ‘Key’, is used to determine how ‘Data’
should be handled. The values {‘P’, ‘V’, ‘R’, 0} to {‘P’, ‘V’, ‘R’, 255} (and their
numerical equivalents) are reserved and must not be used except as described in this
specification.

The FourCC metadata elements are defined as shown below.

FourCC Key Data Size Data Description
‘P’, ‘V’, ‘R’, 3 0 Variable An array of integers describing the position and sizes of each

texture within a texture atlas. Each sequence of four integers
represents the information for a single texture within the atlas and
appear in the order:
1. X Position
2. Y Position
3. Width
4. Height

‘P’, ‘V’, ‘R’, 3 1 8 Specifies that the file contains normal map information. The 8
bytes are in the form of a 32-bit float representing the scale of
the normal map, followed by a four character array describing the
order of the channels, for example {‘x’, ‘y’, ‘z’, ‘h’}. Use of ‘h’ as
the representation for a given channel denotes that the channel in
question contains the original height map.

‘P’, ‘V’, ‘R’, 3 2 6 Specifies that the file contains a cube map and the order of the
faces within that cube map. The 6 bytes represent a six character
string. This string shows the order the cube map faces are stored
in the texture data, for example ‘XxYyZz’. Uppercase letters refer
to a positive axis position while lowercase refer to a negative axis
position. Not all axes must be present.

Imagination Technologies Ltd Public 9

3. Metadata Format — Revision 1.0

FourCC Key Data Size Data Description
‘P’, ‘V’, ‘R’, 3 3 3 Specifies the logical orientation of the texture within the texture

data. This does not affect the mapping from pixels to texture
coordinates. Each byte is a Boolean value representing the
orientation for a single axis in the order X, Y, Z. The values are as
follows:
• X Axis

• Non-zero value = X values increase to the left
• Zero value = X values increase to the right

• Y Axis
• Non-zero value = Y values increase upwards
• Zero value = Y values increase downwards

• Z Axis
• Non-zero value = Z values increase outwards
• Zero value = Z values increase inwards

‘P’, ‘V’, ‘R’, 3 4 12 Specifies whether the texture has a border. The 12 bytes are
broken down into three unsigned 32-bit integers. The three
integers represent the size of the border of the image, in pixels, on
the X, Y and Z axes, respectively. These values are used to offset
texture reads by the size of the border in order to obtain the actual
texture data.
It should be noted that only three border sizes are given, this
means that the border size for X is applied to both the left and right
of the image, Y to the top and bottom and Z to the front and back.

‘P’, ‘V’, ‘R’, 3 5 Variable Specifies that this block contains padding data. The size of data
varies in order to align the texture data with a convenient block
boundary. The contents of data are left undefined. This block should
be skipped during parsing.

Key (Unsigned 32-bit integer)

Key is an unsigned 32-bit integer, which, when coupled with FourCC determines how
Data should be handled.

Data Size (Unsigned 32-bit integer)

Data Size is an unsigned 32-bit integer representing the size of Data in bytes.

Data

Data is an array of user defined information of size determined from Data Size of a data
type and purpose determined from the value of FourCC and Key.

Padding

Padding is a block of undefined data that can be used to ensure Data aligns with block
boundaries. This block is not always defined and depends on the value of FourCC

10 Public Imagination Technologies Ltd

4. Texture Data — Revision 1.0

4. Texture Data
A summary of the different elements which make up the texture data block of PVR files

The remainder of the file, after the header and metadata, is texture data. The format
and size of this texture data can be found in the header.

Uncompressed Texture Data Structure

The uncompressed texture data is laid out as follows:

for each MIP-Map Level in MIP-Map Count
 for each Surface in Num. Surfaces
 for each Face in Num. Faces
 for each Slice in Depth
 for each Row in Height
 for each Pixel in Width
 Byte data[Size_Based_On_PixelFormat]
 end
 end
 end
 end
 end
end

Compressed Texture Data Structure

All compressed data formats have a "minimum width/height" which is the lowest
number of pixels that can be represented by any given region in a compressed image.

The compressed texture data is laid out as follows:

for each MIP-Map Level in MIP-Map Count
 for each Surface in Num. Surfaces
 for each Face in Num. Faces
 for each Region by aligned Depth (Based_On_PixelFormat)
 for each Region by aligned Height (Based_On_PixelFormat)
 for each Region by aligned Width (Based_On_PixelFormat)
 Byte data[Size_Based_On_PixelFormat]
 end
 end
 end
 end
 end
end

Imagination Technologies Ltd Public 11

5. Contact Details — Revision 1.0

5. Contact Details
For further support, visit our forum:

http://forum.imgtec.com

Or file a ticket in our support system:

https://pvrsupport.imgtec.com

For general enquiries, please visit our website:

http://imgtec.com/corporate/contactus.asp

12 Public Imagination Technologies Ltd

http://forum.imgtec.com
https://pvrsupport.imgtec.com
http://imgtec.com/corporate/contactus.asp

	Contents
	1. Introduction to PVR
	2. Header Format
	3. Metadata Format
	4. Texture Data
	5. Contact Details

